
TEEv: Virtualizing Trusted Execution Environments
on Mobile Platforms

Wenhao Li
Institute of Parallel and Distributed

Systems, Shanghai Jiao Tong
University
China

liwenhaosuper@sjtu.edu.cn

Yubin Xia
Institute of Parallel and Distributed

Systems, Shanghai Jiao Tong
University
China

xiayubin@sjtu.edu.cn

Long Lu
Northeastern University

USA
l.lu@northeastern.edu

Haibo Chen
Institute of Parallel and Distributed

Systems, Shanghai Jiao Tong
University
China

haibochen@sjtu.edu.cn

Binyu Zang
Institute of Parallel and Distributed

Systems, Shanghai Jiao Tong
University
China

byzang@sjtu.edu.cn

Abstract
Trusted Execution Environments (TEE) are widely deployed,
especially on smartphones. A recent trend in TEE develop-
ment is the transition from vendor-controlled, single-purpose
TEEs to open TEEs that host Trusted Applications (TAs) from
multiple sources with independent tasks. This transition is
expected to create a TA ecosystem needed for providing
stronger and customized security to apps and OS running in
the Rich Execution Environment (REE). However, the tran-
sition also poses two security challenges: enlarged attack
surface resulted from the increased complexity of TAs and
TEEs; the lack of trust (or isolation) among TAs and the TEE.

In this paper, we first present a comprehensive analysis
on the recent CVEs related to TEE and the need of multiple
TEE scheme. We then propose TEEv, a TEE virtualization
architecture that supports multiple isolated, restricted TEE
instances (i.e., vTEEs) running concurrently. Relying on a
tiny hypervisor (we call it TEE-visor), TEEv allows TEE
instances from different vendors to run in isolation on the
same smartphone and to host their own TAs. Therefore,
a compromised vTEE cannot affect its peers or REE; TAs
no longer have to run in untrusted/unsuitable TEEs. We
have implemented TEEv on a development board and a real
smartphone, which runs multiple commercial TEE instances

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
VEE ’19, April 14, 2019, Providence, RI, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6020-3/19/04. . . $15.00
https://doi.org/10.1145/3313808.3313810

from different vendors with very small porting effort. Our
evaluation results show that TEEv can isolate vTEEs and
defend all known attacks on TEEwith onlymild performance
overhead.

CCS Concepts • Security and privacy → Mobile plat-
form security;

Keywords TEE; TrustZone; Virtualization; Mobile security
ACM Reference Format:
Wenhao Li, Yubin Xia, Long Lu, Haibo Chen, and Binyu Zang. 2019.
TEEv: Virtualizing Trusted Execution Environments on Mobile
Platforms. In Proceedings of the 15th ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments (VEE ’19), April
14, 2019, Providence, RI, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3313808.3313810

1 Introduction
Trusted Execution Environment (TEE)1 is getting widely
used, especially on mobile devices. Since its debut, TEE de-
velopment has gone through the following stages. In the first
stage, TEE is mainly used for secure booting which checks
the validity of the loaded OS in the Rich Execution Envi-
ronment (REE), e.g., in Motorola X/G/E mobile phones. In
the second stage, TEE starts supporting more functionali-
ties, including encryption, fingerprint authentication, mobile
payment, trusted user interface (TUI), Digital Rights Manage-
ment (DRM), etc. Some manufacturers also leverage TEE’s
high privilege to perform runtime protection of REE, e.g.,
TrustZone Integrity Measurement Architecture (TIMA) in
Samsung’s KNOX [39]. Up to this stage, the functionalities
of a TEE are typically fixed (i.e., cannot change after manu-
facturing). For example, if a third-party company needs to

1In this paper, by TEE, we mean the software running in the secure world
of ARM TrustZone except the trusted applications (TAs). TEE offers an
execution environment for TAs.

https://doi.org/10.1145/3313808.3313810
https://doi.org/10.1145/3313808.3313810

Table 1. Real-worldmobile commercial TEE providers and products
.

Vendor TEE Name Commonly
Used Arch

Chip Vendor Qualcomm QSEE [15] ARM32, ARM64
Spectrum Spectrum TEE ARM32
HiSilicon TrustedCore [38] ARM32

TEE Vendor Apple Enclave [37] ARM32
TrustKernel T6 [18] ARM32
Trustonic Kinibi [19] ARM32
Google Trusty [11] ARM32
Linaro OP-TEE [12] ARM32
SierraWare SierraTEE [16] ARM32
Proven&Run ProvenCore [14] N.A.

deploy a Trusted Application (TA) for mobile payment in
TEE, it has to pre-install the TA before devices leave factories.

Today, the third stage of TEE development is unfolding.
New TEEs now support dynamic (post-manufacture) installa-
tions of TAs. There has already been a fewTA app stores from
which phone users can easily download and install TAs, just
like installing an ordinary app, e.g., Samsung’s trustlets [39]
and TrustKernel’s TEEReady [50]. GlobalPlatform [10] has
proposed a set of APIs for communication between TEE and
REE, which nowadays most commercial TEEs follow as a de
facto standard. ARM also leads a group of TEE vendors to
create the Open Trust Protocol (OTrP) [22], which combines
a secure architecture with TA management. The aim of these
efforts is to enhance the compatibility and deployability of
TAs with different TEEs.

However, this increasing openness and flexibility make
TEEmore complex and enlarge the attack surface. To support
various TAs, TEEs are growing with more functionalities,
which lead to significant increase of the size of Trusted Com-
puting Base (TCB). Meanwhile, as TEEs need to support
dynamical installation of new TAs, it is no longer feasible
for manufacturers to perform complete security tests in fac-
tory. At present, there are more than ten TEE vendors in the
market (as shown in Table 1).

The larger TCB of TEE and the more dynamic TEE ecosys-
tem bring two challenges: weakening security and increasing
distrust. First, TEE usually has the highest privilege of the
system, thus if the TEE is compromised, the security of the
entire system can be breached. For example, an attacker
can leverage a bug of TEE to write arbitrary memory of
REE which is known as Boomerang attack (CVE-2016-8764).
Meanwhile, if a compromised TEE may further attack TAs
and cause leakage of secrets like fingerprint data (CVE-2015-
4422) or keys (CVE-2015-6639). It is expected that the number
of TEE vulnerabilities will keep increasing in the near future
due to the enlarged attack surface.

Second, since there is only one TEE in each device cur-
rently, all TAs have to unconditionally trust the TEE. How-
ever, this trust is becoming more and more difficult to es-
tablish as TAs from different sources are entering into TEEs.
TA vendors may require a higher security standard or more
security features than some TEEs provide. It is also possible
that a TA vendor is in conflict of interest with a TEE vendor
and prefers to trust/run in another TEE.
In this paper, we first present a comprehensive analysis

on the recent CVEs related to TEE and the need of multiple
TEE scheme. We then propose TEEv, a TEE virtualization
architecture that supports multiple isolated, restricted TEE
instances (i.e., vTEEs) running concurrently. Relying on a
tiny hypervisor (we call it TEE-visor), TEEv allows TEE
instances from different vendors to run in isolation on the
same smartphone and to host their own TAs. Therefore, a
compromised vTEE can affect neither its peers nor the REE;
TAs no longer have to run in untrusted/unsuitable TEEs.
Meanwhile, our system also supports controlled interaction
between TAs running on different vTEEs (e.g., between a
fingerprint authentication TA and a payment TA), which
makes our system more practical and deployable.

The design and implementation of TEEv overcome several
challenges. First, there is no hardware support for virtualiza-
tion in the secure world. Thus, we have to run the TEE-visor
and vTEE in the same privilege while still keeping the iso-
lation between them. Second, the virtualization should be
completely transparent to REE applications and TAs, which
have been deployed on billions of devices. Third, we also
need to multiplex different peripherals to support TAs like
fingerprint, frame buffer, etc., which are not designed for
multiplexing. Finally, we need to minimize the modification
to existing TEEs and also keep the overhead as low as possi-
ble to make TEEv practical.

We have implemented the system on a development board
and a real mobile phone. It can run multiple commercial TEE
instances from different vendors with very small porting
effort. Our evaluation results show that TEEv can isolate
vTEEs and defend all the known attacks on TEE with only
mild performance overhead.

This paper makes the following contributions:
• A TEE virtualization architecture without hardware
virtualization support to enable multiple real-world
vTEE instances running simultaneously.
• A novel design enforcing the isolation between differ-
ent vTEEs, as well as between vTEE and REE and is
transparent to existing REE and TAs, and only needs
small modification to the existing TEEs.
• An implementation of TEEv on real mobile phones
for security and performance evaluation, which shows
that the system can defend all the existing vulnerabili-
ties of TEEs and the performance overhead is small.

smc

monitor mode: Secure Monitor Mode

Normal World (REE) Secure World (TEE)

smc

kernel mode:
TEE-kernel

user mode:
TEE App

kernel mode: OS

user mode: App

VM

hyp mode:
Hypervisor

EL0

EL1

EL2

s-EL3

s-EL1

s-EL0

Figure 1. ARM TrustZone architecture.

2 Background & Motivation
2.1 TEE Architecture
ARM TrustZone [21] is a hardware-based security mech-
anism available on most mobile devices today. It consists
of a set of CPU extensions for isolating processors, mem-
ory and peripherals between two execution modes, namely
the Normal World and the Secure World (as Figure 1). The
normal world has three execution levels: EL0 for user appli-
cations, EL1 for operating system, and EL2 for hypervisor.
The secure world also has three execution levels but with a
subtle difference: s-EL0 for user-level trusted applications,
s-EL1 for trusted operating system, and s-EL3 for monitor
mode. Note that the secure world does not have s-EL2 yet
for hypervisor 2.

The secure world can control all the computing resources,
while the normal world can only access resources that are
assigned to it. The normal world is used to run a function-
ally rich and complex commodity OS (REE). In contrast, the
secure world is for hosting security-critical services (TEE).
The world switching is done through a special instruction
named “secure monitor call” (smc), which traps the processor
to the monitor mode for context saving and restoring. The
code running in the monitor mode is called a Secure Monitor,
which is usually provided by chip vendors by default, e.g.,
ARM Trusted Firmware (ATF). Similarly, memory can also be
split to two parts: the normal part and the secure part. The
normal world cannot access the secure part but the secure
world can access all the memory.

This two-world isolation also expands to all the peripher-
als and interrupts. Once an interrupt occurs, if it is assigned
to the secure world, TrustZone will switch the processor
to the secure world mode to handle it. A peripheral can be
assigned to both worlds at the same time or secure world
accessible only. The normal world cannot access the secure
world’s protected peripherals. The secure world controls the
assignment of all the peripherals. Such assignment can be
changed during runtime.

2ARMv8.4-A has proposed s-EL2 [2], but has no any implementation yet.

Currently, TAs are not designed as standalone applica-
tions and TEE follows a request-response execution model:
a TEE executes only when receving requests from REE to
TA. Thus the scheduling model of TEE’s main thread follows
the calling application of REE OS.

2.2 Vulnerabilities of TEE
We collect published vulnerabilities of TEEs, which are listed
in Table 6 in the appendix. Many vulnerabilities are critical
to a large number of devices. A post of Google’s Project
Zero [1] shows how to exploit twomajor TEEs on real mobile
devices. It concludes that “ ... despite their highly sensitive
vantage point, these operating systems currently lag behind
modern operating systems in terms of security mitigations and
practices.”

Many of the CVEs are not well documented and have long
delay before publishing. For example, CVE-2016-10238 was
first uncovered in 2016 but was not released until March
2017, and the description is brief: “... The technical details are
unknown and an exploit is not publicly available.”3 Still, we
try to analyze each vunlerability with best effort.

We find that there are three basic categories of TEE-related
vulnerabilities: First, TEE vulnerabilities can lead to secret
data leakage or arbitrary code execution, e.g., CVE-2017-
0518/0519, CVE-2016-2431/2432, etc. Second, TEE vulnera-
bilities allow one TA to affect the security of other TAs, e.g.,
CVE-2016-0825 and CVE-2015-6639/6647. Third, TEE vulner-
abilities can be leveraged to achieve privilege escalation in
the REE, e.g., CVE-2016-8762/8763/8764. The causes of these
attacks include the lack of isolation and the semantic gap
between different execution environments.

One of the major reasons leading to the above vulnerabili-
ties is that there are a lot of interactions between applications
running in REE and TEE, which are usually done through
shared memory. As stated by Machiry et al. [44]: “TEE has
very limited visibility into the untrusted environment’s secu-
rity mechanisms”, which is referred to as the “semantic gap”
between TEE and REE. Thus, a malicious CA (client applica-
tion running in REE) may request the TEE to overwrite data
in the REE kernel. Although the CA itself cannot do so since
it has no privilege, the TEE has higher privilege and may
violate the REE’s security mechanism by logical mistakes.

2.3 Needs for Multiple Isolated TEEs
Currently, all TAs installed on a device have to trust the only
TEE kernel available on that device. This forced trust is being
increasingly questioned as the TA ecosystem becomes more
diverse and open. Consider a mobile payment TA running in
a TEE offered by the phone manufacture. If an attacker lever-
ages a bug of TEE to steal the private key of the payment TA,
she can actually steal user’s money directly. In practice, the
payment company ends up compensating the user for the

3https://vuldb.com/?id.101419

fault of TEE, like AliPay [3]. The point here is that currently
a TA has to trust the only available TEE on a device, despite
that the TEE might not meet the TA’s security requirements
or is not trustworthy to the TA. In contrast, if the system
supports multiple TEEs, then the phone manufacturer can of-
fer a default TEE (aka., system TEE in this paper) for running
manufacturer’s TAs. At the same time, TAs with different
security requirements can install TEE instances they trust.

Protecting TEE from attacks by hardening TEE itself could
be one research direction for the problem we address. How-
ever, as shown in Table 1, there are various TEE OS products
from different vendors widely deployed in billions of devices,
each of them has diverged design and implementation. It is
hard to protect them one by one in practice.

3 System Overview
We summarize our observations in the above sections:
• More and more TAs are getting deployed and TEE now
supports dynamical installation.
• Different TEE vendors have different designs and im-
plementations of TEE.
• Both TA and TEE OS are premature in security which
already leads to critical vulnerabilities. A compromised
TEE may affect the security of REE and TAs.
• Different TA providers are not willing but has to trust
the only TEE on the device.

By introducing a thin hypervisor, called TEE-visor, our
system allows multiple isolated TEE instances (vTEEs) to run
simultaneously. The design brings three benefits: isolation,
restricted interaction and multiple vTEEs. First, TEE-visor
can enforce two types of isolation: among vTEEs, between
vTEE and REE. Thus, even if a vTEE has vulnerabilities and
gets compromised, it cannot affect its peers, which localizes
TEE attacks, and prevents them from breaching the security
of the entire system. Second, TEE-visor restricts the interac-
tion between different execution environments by requiring
the use of designated communication channels, interfaces,
and semantics. Third, by supporting multiple vTEEs, the TAs
can choose their trusted and suitable TEE instance instead
of having to trust the default TEE.

3.1 Threat Model and Assumptions
The TEE-visor is globally trusted as the TCB in TEEv. We
assume the boot process is protected by the hardware and
the TEE-visor cannot be compromised after bootup.
A vTEE does not trust its neighbouring vTEEs. From a

vTEE’s perspective, other vTEEs may be controlled by an
attacker or be vulnerable. Within each vTEE, the kernel
does not trust any TAs and each TA does not trust other
TAs by default. The system-vTEE(introduced in Section 3.3)
is partially trusted by other vTEEs. A vTEE can choose to
trust a service provided by the system-vTEE, e.g., fingerprint
authentication, instead of trusting the entire system-vTEE.

Normal World

REE

Secure World

vTEE-BvTEE-A

TEE-visor

REE Kernel

CA-1 CA-2 CA-3 TA-1 TA-2 TA-3

Dev-3 Dev-4 Dev-5Dev-1 Dev-2

Chip Firmware

KernelKernel

Gate

S
a

m
e

 P
riv

ile
g

e

Figure 2. Architecture of TEEv. In the secure world, TEE-visor
and the kernel of vTEE run in the same privilege but from different
address spaces. The “gate” is a piece of code mapped in both the
TEE-visor and vTEE instances at the same address.

In another word, a compromised system-vTEE cannot affect
the security of those vTEEs that do not rely on its services.
Similarly, the REE also partially trusts vTEEs if it needs

services provided by these vTEEs. Such trust is at application
level instead of system level, whichmeans that even if a vTEE
is malicious, it cannot illegally access REE’s data; only the
REE app that relies on vTEE’s services might be affected.
We do not consider physical attacks between vTEEs or

between REE and vTEE. We also do not consider logic bugs
within the apps, e.g., a bug may mistakenly map all of the
app’s memory as shared with a TA, which allows a TA to
access all the app’s data. Side channel attacks that could
break the isolation of TrustZone are out of scope in this
paper, as discussed in Section 5.

3.2 Challenges
There are several technical challenges we overcome.

1. Nohardware virtualization support:Unlike the hyp
mode in the normal world, there is no hardware virtu-
alization support in the secure world. Thus, TEE kernel
is supposed to be running with the highest privilege
to control all the computing resources. We need a way
to ensure the isolation between vTEE and TEE-visor
and to impose restrictions on each vTEE.

2. Compatibility:Our system should be compatible with
most devices. Different mobile devices usually have
different peripherals, which require their own drivers.
However, it is not practical for all the vTEE vendors
to have drivers for all existing secure devices.

3. Small TCB:The TCB of our system should be kept
small. TEE-visor should contain only essential func-
tionalities to minimize its attack surface.

4. Ease of deployment: It should be non-intrusive to
existing systems. It should not require major modifi-
cation to existing TEE implementations or incur sig-
nificant performance overhead.

3.3 Overview of TEEv
Our system aims to enable multiple isolated vTEEs (virtual-
ized TEEs) in one secure world on a single device. The goals
entail strong isolation between REE and vTEE, as well as
isolation among vTEEs. Using our system, TA vendors can
encapsulate trusted services into their own vTEEs without
having to use or trust the phone manufacturer’s TEE. This
new capability allows the TA ecosystem to be more dynamic
and open without sacrificing the security of each TA or the
entire device. Meanwhile, a vulnerable vTEE cannot affect
the REE or other vTEEs. Our system contains the following
components, as shown in Figure 2:
• a TEE-visor running as a hypervisor for managing and
securing multiple vTEEs;
• a gate mechanism for secure context switches between
different execution environments and the TEE-visor;
• a secure communication channel mechanism for dif-
ferent execution environments to safely interact.

Specifically, the TEE-visor is in charge of resource man-
agement in the secure world. It controls the scheduling of
vTEEs, the mapping of memory, as well as the assignment of
all the peripherals. It also manages the installations, updates,
and removals of third party vTEE instances. The TEE-visor
runs at the same privilege level as the vTEEs, but is isolated
from other environments to ensure its security. Details can
be found in Section 4.1.
The interaction between REE and vTEE is only allowed

through the secure communication channel established by
the TEE-visor. Either vTEE or REE can create a commu-
nication channel with another execution environment by
sending a request to the TEE-visor. The request contains
the identifications of both environments as well as allocated
memory pages from the requester for sharing. Upon such a
request, the TEE-visor first authenticates both environments
and then maps the shared memory pages by adjusting the
page table in each environment. The TEE-visor provides
well-defined interfaces for vTEE/REE to operate on commu-
nication channels, including creating/deleting, attaching/de-
taching memory pages, etc.
There is one system-vTEE, which includes an TEE OS

that contains device drivers for peripherals like fingerprint
readers, as well as several common TAs, e.g., KeyMaster and
GateKeeper TA required by Android OS. The system-vTEE
itself is pre-installed and restricted, which does not allow
new TAs to be installed dynamically. Apps in the REE can
require the TEE-visor to install third-party vTEEs, which
could be a full-fledged TEE supporting multiple TAs, or just
a specialized TEE with only a few functionalities. A vTEE is
activated only when it receives a service request from other
environments or devices (e.g., handling interrupts).

We now use an example to illustrate the interactions
among the components of our system. Consider an off-the-
shelf mobile phone with only one vTEE (system-vTEE) ini-
tially. The TEE-visor assigns the fingerprint reader to the
system-vTEE by default. Later, the phone owner installs one
mobile payment app. The payment app is delivered with its
own vTEE and TA, which is installed by the TEE-visor during
the app installation. The signature of the vTEE image will
be checked by the TEE-visor in advance. In most of the time,
the pay-vTEE is not active. When the user needs to pay and
authenticate herself using her fingerprint, the app sends a
request with the pay-vTEE’s ID to the TEE-visor to establish
a communication channel with the pay-TA in pay-vTEE. As
a result, the pay-vTEE is activated. It establishes a commu-
nication channel with the system-vTEE, which is asked to
verify the user’s fingerprint. The system-vTEE then reads
and authenticate user’s fingerprint and return the result to
the pay-vTEE through the channel. The pay-TA then gets
the result and continues the process of payment.

4 Design
4.1 Isolation Enforcement
Isolation between TEE-visor and vTEE: The first chal-
lenge we tackle while designing our system is to isolate the
TEE-visor from vTEEs. Our solution is inspired by the prior
work on same privilege isolation [23, 32, 34]. Specifically, we
introduce a small TEE hypervisor named TEE-visor, that
runs at the logically lowest execution level (i.e., highest priv-
ilege) and maintains an exclusive control over the MMU
(memory management unit). Each time a CA (Client Applica-
tion) in REE needs to communicate with a TA in TEE, the CA
will send a request to the TEE-visor, which in turn grants
the TA access to one or more CA’s memory pages.

To ensure only the TEE-visor can configure the MMU, all
the related instructions must be protected. These instruc-
tions include those accessing SCTLR (system control regis-
ter), TTBR (translation table base register), VBAR (vector
base register), DACR (domain access control register), TLB
flush and MMU enable/disable register. Our design disallows
vTEE instances to use these instructions. We enforce this by
scanning the binary of vTEE and ensuring no such instruc-
tions exist during vTEE installation or loading. With vTEE
instances deprived of direct memory management rights,
the TEE-visor gains full and exclusive control over the page
table. As a result, the TEE-visor can protect the integrity and
confidentiality of its own code and data. Furthermore, lever-
aging the control over MMU and peripherals, the TEE-visor
also isolates vTEE instances and protects the entry gates.

Isolation between vTEEs and vTEE/REE: TEE-visor is
the TCB of our system. It can access all the physical mem-
ory. Upon booting, TEE-visor will identify and manage every
memory usage permissions for furthermemorymanagement.
TEE-visor restricts each vTEE to its own memory view (i.e.,

vTEE Data

TEE-visor Data

World Shared Mem

vTEE Code

Gate Data

Gate Code

TEE-visor Code

REE Data

REE Code

vTEE Data

TEE-visor Data

World Shared Mem

vTEE Code

Gate Data

Gate Code

TEE-visor Code

REE Data

REE Code

vTEE Data

TEE-visor Data

World Shared Mem

vTEE Code

Gate Data

Gate Code

TEE-visor Code

REE Data

REE Code

RWNX

RX

RWNX

RX

NULL

NULL

RWNX

NULL

NULL

RWNX

RWNX

RWNX

RX

RWNX

RX

RWNX

RWNX

RWNX

NULL

NULL

NULL

NULL

NULL

NULL

RWNX

RWNX

RX

vTEE’s View TEE-visor’s View REE’s View

Figure 3. Memory Mapping of vTEE, TEE-visor and REE

a partial view of the entire memory). Specifically, a vTEE
can only access its own data and code. It cannot access the
memory space assigned to other vTEE instances or REE or
TEE-visor without explicitly authentication. Figure 3 shows
the memory views of a vTEE, the TEE-visor, and the REE,
respectively. This design ensures that a vTEE has no higher
privilege than the REE, establishing a mutual distrust con-
nection between vTEE and REE.

vTEE kernel life-time code integrity: Ensuring each
vTEE kernel life-time code integrity is essential for TEEv,
otherwise attackers may break our isolation guarantee by
exploiting one vTEE and inject code in vTEE, which leads to
executing arbitrary privileged code in the same privileged
level as TEE-visor. Since TEE-visor controls page tables of all
vTEEs, TEE-visor enforces that all vTEE kernel code section
is mapped as read-only and except the vTEE kernel code
section, all other pages mapped by vTEE are set to privileged
execution never (PXN) to prevent them from executing in
kernel privilege.

4.2 Gate for Context Switching
A vTEE can call services provided by TEE-visor through a
gate. A gate is used for switching the execution between
TEE-visor and a vTEE. It is a piece of code mapped in the
TEE-visor and all vTEE instances at the same address. Any
vTEE or the TEE-visor can issue a context switch through
the same code.
The gate mechanism controls the process of switching

between a vTEE and the TEE-visor. It is designed to achieve
the following goals. First, the gate should be the only entry
point for context switch and cannot be bypassed. Second, the
switching process should be atomic to avoid partial execu-
tions or shortcuts. Third, the integrity of the gate should be
ensured. We list the critical part of the gate code in Listing 1.
To unify the gate entry, the gate code is executed in monitor
mode through SMC intruction call with interrupt disabled.
The data used by the gate code (for example, teevisor_pt in
Line 14 and Line 28) is mapped as read-only for all vTEE
instances to avoid directly tamper the page table pointer of
TEE-visor by vTEEs. The exit gate routine from TEE-visor
to vTEE is similar to the entry gate code.

A potentially compromised vTEE can attempt to attack
the gate in two ways: interrupting the execution of the gate
to pollute general register values or jumping to the middle
of the gate. We will describe how we defend these attacks in
the following. Note that the integrity of vTEE TTBR register
values (Line 2 to 12) will be further checked after entering
TEE-visor.

Listing 1. The code snippet of entry gate
1 /* Temp save vTEE TTBR regs */

2 cpsid if /* disable irq and fiq */

3 mrc p15 , 0, r1, c12 , c0, 0 /* read VBAR */

4 push {r1}

5 mrc p15 , 0, r1, c1, c0, 0 /* read SCTLR */

6 push {r1}

7 mrc p15 , 0, r1, c2, c0, 1 /* read TTBR1 */

8 push {r1}

9 mrc p15 , 0, r1, c2, c0, 0 /* read TTBR0 */

10 push {r1}

11 mrc p15 , 0, r1, c2, c0, 2 /* read TTBCR */

12 push {r1}

13 /* Load TEE -Visor TTBR Regs */

14 ldr r0, =teevisor_pt

15 ldr r1, [r0], #4

16 mcr p15 , 0, r1, c2, c0, 2 /* write TTBCR */

17 ldr r1, [r0], #4

18 mcr p15 , 0, r1, c2, c0, 0 /* write TTBR0 */

19 ldr r1, [r0], #4

20 mcr p15 , 0, r1, c2, c0, 1 /* write TTBR1 */

21 ldr r1, [r0], #4

22 mcr p15 , 0, r1, c1, c0, 0 /* write SCTLR */

23 ldr r1, [r0], #4 /* SP */

24 ldr r1, [r0], #4

25 mcr p15 , 0, r1, c12 , c0, 0 /* write VBAR */

26 /* Check jump -to-the -middle attacks from vTEE */

27 isb
28 ldr r0, =teevisor_pt

29 ldr r1, [r0], #4

30 mrc p15 , 0, r3, c2, c0, 2 /* read TTBCR */

31 cmp r1, r3

32 bne .

33 ldr r1, [r0], #4

34 mrc p15 , 0, r3, c2, c0, 0 /* read TTBR0 */

35 cmp r1, r3

36 bne .

37 ldr r1, [r0], #4

38 mrc p15 , 0, r3, c2, c0, 1 /* read TTBR1 */

39 cmp r1, r3

40 bne .

41 ldr r1, [r0], #4

42 mrc p15 , 0, r3, c1, c0, 0 /* read SCTLR */

43 cmp r1, r3

44 bne .

45 ldr r1, [r0], #4 /* SP */

46 ldr r1, [r0], #4

47 mrc p15 , 0, r3, c12 , c0, 0 /* read VBAR */

48 cmp r1, r3

49 bne .

50 /* Flush TLB */

51 mov r0, #0

52 mcr p15 , 0, r0, c7, c5, 0

53 /* Jump to tee -visor main() */

54 dsb
55 isb
56 bl teevisor_main

Defending Jump-to-the-middle Attack: Note that in
Listing 1 there are two critical instructions in Line 18 and 20,

which set TTBR0 and TTBR1 to point to the corresponding
page tables. The code page containing these two instruc-
tions is mapped to the address space of vTEE , which could
potentially be abused: a malicious or compromised vTEE
may initialize r1 with a crafted value and then jump directly
to Line 18 (thus skipping Line 14-17) to set TTBR0 with the
crafted value. That means the malicious vTEEs can change
the page table, which violates our security requirement that
the page table can only be controlled by the TEE-visor. We
call it jump-to-the-middle attack.
In order to defend against this attack, we add a piece of

code (Line 27 to 49) to reload TTBRs to ensure that their val-
ues should be the physical addresses of TEE-visor’s page ta-
ble. However, if the malicious vTEE has successfully changed
the page table, this piece of checking code may not exist in
the new address space.

In TEEv, we leverage a hardware feature called TLB lock-
down [17] to solve this problem. When a TLB lockdown is
in place, the translation of cached addresses remains fixed.
Therefore, switching page table has no effect on memory
translation during a TLB lockdown. Using this hardware fea-
ture, TEE-visor locks the TLB for translating the gate code.
Thus, even if a malicious vTEE issues jump-to-the-middle
attack and change the page table to a forged one, it cannot
violate the control flow of the gate, since the processor al-
ways executes the rest of the code (Line 19 to 56), which can
detect such attacks.

Defending Interrupt-ExecutionAttack: The gate is as-
sumed to execute in interrupt disabled state (for example
execute in SMC handler which is interrupt disabled), How-
ever, a malicous vTEE may execute the gate code directly
and pollute the general register by carefully controlling the
interrupt timing. Similar to jump-to-the-middle attack, we
need to ensure that interrupt is disabled during the gate
transition. We guarantee the gate is executed in interrupt
disabled state by intercepting the vector base register (see
Section 4.1) of vTEE. The real exception base address is held
by TEE-visor and upon receving an interrupt, TEE-visor will
firstly check that the execution context is not in the gate
during the interrupt occurs before forwarding the interrupt
to the vTEE.

Fixing The Address Space ID Problem: It should be
noted that an attacker may still use the processor’s tagged
TLB feature to bypass our TLB lockdown technique. Tagged
TLB is introduced for performance optimization. Each TLB
entry can be associated with a specific ASID (Address Space
ID) so that after a context switch there will be no need for a
TLB flushing. Abusing this feature, a malicious vTEE may set
the TTBR with an ASID different from the ASID of locked
TLB entries (TTBR has a field of ASID) through reusing the
gate code (Line 18 and 20) by jump-to-the-middle attack or
interrupt-execution attack. Now the processor thinks that
a different address space is used since the ASID in TTBR is
different from the ASID in TLB, and consequently, ignores

our locked TLB. Thus, the next instruction will trigger a TLB
miss and the processor will use the malicious page table in
memory.

One straightforward solution to this problem is to simply
disable the tagged TLB feature. This can work because all
the page tables are controlled by the TEE-visor from the
beginning. However, this solution will affect the global per-
formance of TEE because now after every context switch
there will be a TLB flush. In our system, we propose another
solution by leveraging another TLB feature named “global
entries” to retain the performance benefit of tagged TLB.
There is a bit in each locked TLB entry (the 9th bit) indicat-
ing whether the entry is used for a single address space or
globally. Once the bit is set, the TLB entry is valid across
all address spaces. Thus, we set all the TLB entries for gate
code pages as global entries. To avoid the locked TLB entries
to be unlock by vTEEs, all TLB unlock/flush operations in
vTEEs are delegated to TEE-visor.

DesignConsideration andLimitation: The secure gate
design described above is based on ARM32 for compatiabil-
ity reason: all real-world TEE products support executing
in ARM32 mode even in 64-bit ARM chips, but few support
ARM64mode (see Table 1). Note that this design could be eas-
ily applied to ARM64 mode. However, preventing Jump-to-
the-middle attacks requires TLB lockdown, which we found
out it may be not available in some 64-bit ARM chips (e.g.,
Cortex-A57 [8] and Cortex-A72 [9]). This limitation could be
eliminated by removing explicitly instructions that update
TTBR0 and TTBR1 in the gate and only activating TTBCR.N
to provide deterministic switch, similar to SKEE [24]. In that
case, we need to guarantee that vTEE does not use TTBR1 but
only TTBR0. In real-world TEE, this guarantee does not hold
by default and thus may require TEE providers to change
the way how TEE manages memory. We argue that our as-
sumption holds in most cases and this solution is useful in
practical because currently large number of mobile and IoT
devices support TLB lockdown feature.

4.3 Interaction between vTEEs and vTEE/REE
Upon loading a vTEE, TEE-visor allocates a secure memory
region for vTEE execution and ensures it is not conflicted
with other vTEE instances. TEE-visor keeps memory view
of each vTEE and keep track of each memory mappings. If
two vTEEs, or one vTEE and the REE, need to exchange data,
they have to establish a secure communication channel with
the help of the TEE-visor. The initiator sends a request to the
TEE-visor with the identities of both environments as well
as pre-allocated memory pages for sharing. The TEE-visor
first authenticates the two environments and then maps the
pages as shared for both environments.

Since there are more than one vTEEs in the system, an app
in REE needs to explicitly specify which vTEE it intends to
interact with. Specifically, the app first establishes a channel

Secure WorldNormal World

Memory

REE vTEE-A

TACA TA

vTEE-B

TA

TEE-visor

x xMemory

view

Figure 4. Interaction between vTEE/REE & between vTEEs.

with the intended vTEE by sending a request to the TEE-
visor with one or more shared memory pages and the ID of
the vTEE as parameters. The TEE-visor then loads the vTEE
instance corresponding to the ID, establishes a communica-
tion channel between the app and the vTEE instance, and
switches to the vTEE to execute through the gate. Interaction
can also happen between different vTEE instances, e.g., a
vTEE asks for a service provided by the system-vTEE, as
shown in Figure 4.

4.4 I/O Device Management
A TEEmay control various peripheral devices, such as finger-
print reader, input device and framebuffer for TUI (Trusted
UI), random number generator, secure storage like RPMB (Re-
play ProtectedMemory Block), various SEs (secure elements),
etc. Traditionally, TEE kernel has the highest privilege and
can control any device by assigning it to the secure world, as
shown in Figure 5-(a). In our system, since the vTEEs are not
fully trusted, we introduce a few new device management
modes. Before describing these modes, we first share two
observations on I/O devices’ usage of TEE, which inspired
our design.
The first observation is that different TAs usually do not

share devices at the same time. TEE is inactive for most of the
time and it is rare, if not impossible at all, that two TAs need
to share one peripheral. In contrast, a VMM (as opposed
to TEE-visor) usually needs to multiplex I/O devices like
disks and network cards among multiple VMs. The second
observation is that the peripheral device drivers used in TEE
are quite diverse. This brings challenges to our design, since
it is not practical to require all third-party vTEE vendors to
have all the device drivers.

Based on the two observations, we designed three modes
of I/O management for different scenarios. The first mode is
delegation mode, as shown in Figure 5-(b). In this mode, a de-
vice is controlled by the system-vTEE. A TA in system-vTEE
offers an interface to TAs running in other vTEEs, acting
as a proxy. The interface usually contains high-level APIs.
For example, the system-vTEE directly controls a fingerprint
reader. A fingerprint TA offers a service of fingerprint check.
A TA in a third-party TEE may ask the fingerprint TA to

authenticate the current user, and will get a result of “pass”
or “fail”. In this case, only the fingerprint TA will get the
user’s fingerprint data, so the diversity of different finger-
print readers is hidden from the third party vTEEs.

The secondmode is frontend/backend drivermode, as shown
in Figure 5-(c). Thismode resembles the I/O para-virtualization
mode in traditional hypervisor’s architecture, such as virtio
in KVM. The system-vTEE controls a peripheral and uses a
back-end driver to offer general abstraction for each type
of device. Thus, a third-party vTEE only needs to have one
front-end driver for each device category. The communica-
tion between back-end and front-end driver is done through
the secure channel mechanism. This mode is useful for those
TAs that have higher security requirements. Take 2D fa-
cial authentication for example 4, A payment TA may not
trust the pre-installed 2D facial algorithm. Using the fron-
tend/backend mode, it can ask for raw data of the video
stream and then use its own algorithm for facial recognition.
The third mode is passthrough mode, which is shown in

Figure 5-(d). In this mode, the device is assigned to and con-
trolled by one vTEE exclusively. The assignment as well
as the revocation are done by the TEE-visor. Once a vTEE
needs to access a device, it sends a request to the TEE-visor,
which checks whether the device is in use or not. If some
other vTEE (e.g., the system-vTEE) is using the device, the
TEE-visor will ask it to release the device. After that, the
TEE-visor will assign the device to the requester vTEE. The
requester will first re-initialize the device before using it, so
that any residual states within the device will not affect the
usage. If one vTEE fails to release a device (e.g., return fail or
timeout), the TEE-visor will revoke it eventually. In practice,
we find that in most cases a vTEE just needs to use a device
for a short time, like generating a random number.
Our system supports these three modes for different sce-

narios. A third-party vTEE can chose which mode to use
for different peripherals and scenarios. In real cases, a TA
can use delegation mode to ease its development. A security
critical TA may chose the frontend/backend or passthrough
mode to get full control over the execution. Thus, this is a
tradeoff between security and availability/deployability.

5 Security Analysis
5.1 Defending Against Existing Attacks
We show how our system can defend against existing attacks
of TEE. Since most of the TEE implementations are not open
sourced, especially those have many CVEs, we cannot do
evaluation on real devices. However, since our system is
expected to be secure by design, we think such analysis can
reflect the effectiveness of our design. We select following
CVEs which have sufficent details for our analysis.

43D facial recognition is usually considered more secure than 2D and can
use the delegation mode.

TEE-visorTEE-visorTEE-visor

Sys-vTEE

Auth-TA

Kernel

Back-end
Driver

vTEE-A

Pay-TA

Kernel

Front-end
Driver

Sys-vTEE

Auth-TA

Kernel

Camera

(c) Front/back Driver (d) Passthrough

Sys-vTEE

Auth-TA

Kernel

Driver

vTEE-A

Pay-TA

Kernel

Fingerprint
Reader

TEE

TA

Kernel

Driver

Device

vTEE-A

TA

Kernel

Driver

RNG

Pay-TA

(b) Delegation(a) Original Design

Figure 5. Different I/O device management modes of TEEv. (a) shows the original design where all the devices are controlled by the
only TEE. (b) shows the delegation mode in which the system-vTEE controls the device and offers interface for other vTEE to access. (c)
shows the front/back driver mode, in which a driver is split into two parts, and the system-vTEE offers a low-level interface to other vTEEs.
(d) shows the passthrough mode, in which a vTEE controls the device exclusively using its own device driver.

CVE-2016-5349: According to [44], three TAs allow a
malicious application in the non-secure world to read any
memory from an arbitrary address in the non-secure world,
including memory of all other applications and the kernel.
By using our system, the TEE instance will be restricted to
only access its own memory and the memory shared with it
explicitly. Thus the attack will be defeated.

CVE-2016-8762/8763/8764: According to [44], the Trust-
Zone driver has a flawed validation mechanism for user’s
input, which enables an attacker to locate both arbitrary read
and write functionalities on any address of REE. The attacker
then can get the root privilege of REE and do further attacks
to enable code execution within the TEE. Although the paper
does not have details on the second step (TEE code execu-
tion), we can know that by using our system, the attacker
will fail on the first step and cannot read/write REE’s data
through sending out-of-range pointers to the TEE services.

CVE-2016-0825: This attack is done by leveragingWidevine
TA’s vulnerability. Once got compromised, the attacker will
send request to the TEE kernel through the TA to leak data
stored in TEE’s secure storage. Since the secure storage is
used by all the TAs within the TEE, such leakage will also
affect other TAs’ security, which is known as “fate sharing”.
By using our system, a critical TA can have its own TEE with
a dedicated secure storage to avoid such leakage.

5.2 Isolation Enforcement
The isolation between vTEE and REE, as well as between dif-
ferent vTEEs, are enforced by TEE-visor’s exclusive control
of MMU.

vTEE Impersonation: If an app is interacting with vTEE-
A, it needs to send the ID of the vTEE-A to the TEE-visor to
establish a communication channel. However, it is within
our threat model that an attacker may change the ID (in
the untrusted normal world) to some already compromised
vTEE instance, vTEE-E, to impersonate vTEE-A and redirect
all the communication. Such attack can only attack the app

(which is in the normal world and not protected) but will
not cause secret data leakage in vTEE-A.

Compromised vTEE: A compromised vTEE may try to
break the isolation of TEE-visor through injecting privileged
instructions. Since TEE-visor controls access permissions of
all vTEE instance memory, it prevents attacks that attempt
to inject unverified code into kernel mode to violate the
isolation. Note that currently all TEE products do not support
dynamic kernel code generation and thus TEE-visor could
easily guarantee the compatibility in this case.

Secure DMA Attacks: Some specific hardware peripher-
als are able to do Direct Memory Access (DMA) inside the
secure memory on many platforms. This feature could be
leveraged by compromised vTEE to read or write arbitrary
secure memory and threaten the isolation enforcement of
TEEv. To avoid this attack, TEE-visor will restrict any direct
manipulation of secure DMA controller. Instead, TEE-visor
only allows the front/back driver mode for the secure DMA
controller and will carefully verify that the secure DMA
request does not violate the isolation scheme of TEE-visor.

Side Channel Attacks: Like other TrustZone based se-
cure systems, TEEv could be potentially vulnerable to side
channel attacks [46] [43]. The SMC instruction in ARM syn-
chronizes the pipeline, making speculative execution attacks
across normal and secure world transitions impossible. How-
ever, a potentially malicious TA inside a premature vTEE
may be able to launch speculative execution attacks to other
TAs and its vTEE. Currently TEEv could not prevent these
attacks inside vTEE. Besides, State of a device in a vTEE not
properly reset in passthrough mode may potentially leak
private device data to other vTEEs. Nevertheless, the effect
of these attacks is limited to leaking information without
altering operations or break the isolation of TEEv.

5.3 Discussion on Trust
Traditionally, there is only one TEE which is trusted by de-
fault. Now we have multiple vTEE instances and need to

consider the relationship between them. The system-vTEE
is introduced mainly for hosting various device drivers. A
3rd party vTEE should not rely on the trust of system-vTEE.
However, if I/O delegation mode is chosen for the fingerprint
authentation, a compromised system-vTEE can return false
results to other vTEEs. In this case, a more secure way is
to use passthrough mode so that the system-vTEE is fully
bypassed. However, the 3rd party TEE should be able to con-
trol the fingerprint reader directly, which is a non-trivial.
A better way is to minimize the system-vTEE to make it
only host device drivers. For example, a phone vendor can
pre-install two vTEEs: a system-vTEE and a ta-vTEE. The
latter is used for installing new TAs. In this case, the attack
surface of the system-vTEE is narrow.
On the contrary, the phone vendors also do not trust the

3rd party vTEE instances. It should not send user’s sensi-
tive information, e.g., fingerprint template, to the untrusted
vTEEs, since most of the phone vendors promise to keep
user’s identity information within the phone, and a 3rd party
vTEE may upload these info to some cloud. Our design can
support full isolation between vTEEs, so this is considered
as a policy issue instead of mechanism one.
TEEv relies on a system-vTEE to provide system wide

services, which may be leveraged to launch confused deputy
attacks. TEEv mitigates the problem by providing restricted
and fixed services, and explicitly configuring shared memory
access.

6 Implementation and Evaluation
We have implemented TEEv both on a TrustZone-enabled
Samsung Exynos 4412 development board and a Mediatek
mobile phone, equipped with ARM Cortex-A9 processors
(32bit). TEE-visor is implemented as an independent secure
component running in secure world and interacts with dif-
ferent vTEEs and REE using well-defined APIs. We have
ported a commercial TEE product and an open-source TEE
running atop of TEE-visor: TrustKernel’s T6 [18], which
has been deployed in hundreds of millions of devices, and
Linaro’s OP-TEE [12], which is widely used by researchers.
T6 is configured as a system-vTEE and OP-TEE as a ta-vTEE.
The chosen vTEEs comply with the GlobalPlatform TEE API
specifications, including TUI, crypto and storage. In our im-
plementation, TEE-visor and all vTEEs are built into 32-bit
executable applications for compatibility reason.

6.1 TEE Porting Efforts
Although the two vTEEs have different code base, the porting
efforts are quite similar. All modifications are within the orig-
inal vTEE kernels. The rest of the code, including vTEE user
space libraries and vTEE drivers in REE, is not changed. The
porting of vTEE kernels can be split into two stages: boot con-
figuration and runtime protection. In the boot configuration

Table 2. Context switch overhead

Invocation Type Latency (ms)

Ctx switch between TAs from different vTEEs 16.0
Ctx switch between TAs within a system-vTEE 10.6
Ctx switch between TAs within original TEE 6.8
Ctx switch from vTEE to TEE-visor 0.2

stage, vTEE kernels need to delegate the page table man-
agement and operation initialization to TEE-visor, including
MVBAR, TTBR0, TTBR1, TTBCR, SCTLR, DACR, TLB flush
and MMU enable/disable operations. Upon page table ini-
tialization of each vTEE, TEE-visor maps code/data pages
of entry gates into vTEE’s address with write-protection.
We found that OP-TEE uses 1MB-sections to map its boot
code and data, which is too coarse for memory protection
and not well protected. Therefore, we refine its code to use
4KB-page granularity with page-level memory protection
enabled. This refinement is necessary to avoid code injection
attack inside vTEE kernel, which might expose a hole for
compromised vTEE to inject privileged instructions in kernel
mode to violate the isolation of TEE-visor and vTEEs. We
added or modified about 270 lines of code in T6 and 210 lines
of code in OP-TEE. After boot configuration, TEE-visor will
lock down the entry gate and enable memory protection for
vTEE. For runtime protection, we replaced all sensitive oper-
ations in vTEE with an SMC gate call to TEE-visor, which
wraps 40 lines of code in T6 and 26 lines of code in OP-TEE.
In our experience, it takes within three days porting efforts
for a TEE kernel developer to run TEE atop of TEE-visor.

6.2 Implementation Complexity and TCB Size
Our design keeps the TCB of TEEv small to reduce the attack
surface. The entry gate of TEEv, which runs in monitor mode
as a unique entry point to TEE-visor, contains about 350 lines
of assembly code. TEE-visor contains about 3800 lines of C
and assembly code. For each vTEE, it only needs to trust its
own code base and TEE-visor.

6.3 Performance Impact
Context Switch between vTEEs: We measured the execu-
tion time of all kinds of context switches on the development
board, including context switch from a vTEE to TEE-visor,
context switch between TAs within a vTEE and across vTEEs.
Table 2 shows the average performance result. We ran the
test on the ARMv7 platform for ten times and calculate the
average.

Secure Service Invocation: TAs usually provide services
for client applications (CA). We measured the secure service
invocation latency between a CA and a TA using system-
vTEE on the development board, as shown in Table 3. The
TA service we tested is a vTEE information query service.
During the TA invocation, there are several round trips to
TEE-visor, including entry call and parameter mapping. We

Table 3. Secure service invocation

TA Placement CA-TA Invocation Latency (ms)

Memory Original TEE 116.0
Memory TEEv 232.5
External storage Original TEE 586.4
External storage TEEv 745.3

Table 4. TEE boot time latency

TEE Type Latency (ms)

Original TEE 2439.2
TEEv 5124.0

measured the case when the TA is pre-placed in memory and
in external storage. When placed in external storage, loading
the TA requires file and crypto verification operations.

TEE Boot Time: TEEv modified the boot procedure of
original TEE: in original TEE, bootloader loads and boots
TEE, then switches to normal rich OS. In TEEv, early stage
bootloader first loads and boots TEE-visor and then boots
system-vTEE. After system-vTEE boots up, it switches to
the normal rich OS. We measured these two types of latency
on the development board, as shown in Table 4. Booting
TEE-visor and vTEEs adds 2.7s, which takes a very small
fraction (7%) of the total device bootup time (39.09s), and is
a one-time effort for each reboot.

Performance Impact on REE: We used Antutu [7] to
measure the overall system performance overhead.We firstly
disabled TEEv, ran the test with original TEE, and then en-
abled TEEv. By comparing the results, we found that TEEv
incurs nearly zero performance overhead. This is because
processors run in REE most of the time, and only run in TEE
on demand in a request-response model. During the test,
TEE has few tasks to run. This implies TEEv has no impact
on performance of existing REE.

7 Real-world Case Study
We use the most popular real-world TAs deployed in more
than a billion devices to demostrate how TEEv could be used
using a MediaTek mobile phone.
Keymaster and GateKeeper TA: Keymaster TA [6] is a

hardware-backed keystore required by Android, which im-
plements various cryptographic functionality to assure the
protection of cryptographic keys. GateKeeper TA [5] per-
forms device pattern/password authentication in TEE for
Android. These two TAs are essential for Android security.

Fingerprint TA: Android fingerprint HAL [4] provides
stubs for third-party fingerprint vendor to implement finger-
print authentication in TEE.

Alipay and Wechat Pay TA: Alipay TA and Wechat Pay TA
are two secure payment TAs using biometric authentication.
During a payment transaction, each app will firstly request
biometric (e.g., fingerprint) TA in TEE to authenticate the

pay-vTEE

Device drivers

pay-app

app-A

REE

ta-vTEE system-vTEE

FP auth service

pay-TA

app-B

TA-A TA-B

Channel

Channel

C
h
a
n
n

e
l

C
h
a
n
n

e
l

Shared
memory

C
hannel

face-TA risk-TA

Figure 6. Four running domains: the system-vTEE and ta-vTEE
are pre-installed by phone vendor. The pay-vTEE is provided by
the payment app vendor. The pay-vTEE and ta-vTEE do not com-
municate directly.

Table 5. Device and payment authentication performance

Scenario Ctx Switches Cost(ms)

Dev unlock using pwd in orig TEE 90 19.8
Dev unlock using pwd in TEEv 90 21.0
Dev unlock using fp in orig TEE 858 178.2
Dev unlock using fp in TEEv 858 211.5
Alipay using fp in orig TEE 937 3130.4
Alipay using fp in TEEv 937 3564.2

user and then request her payment TA to sign the payment
transaction. Upon receving the payment request, the pay-
ment TA will ask the biometric TA for the last authentication
result and sign the transaction using its private key if the au-
thencation passed. The signed response will be sent back to
app, piggyback to remote server to finialize the transaction.

We show how to deploy TEEv to protect these existing TAs.
As shown in Figure 6, the phone vendor pre-installs system-
vTEE and ta-vTEE on phone. The system-vTEE contains all
the secure device drivers and offers services, such as fin-
gerprint authentication and backend drivers, to other vTEE
instances. Fingerprint TA, keymaster TA and gatekeeper TA
are pre-installed in the system-vTEE. The ta-vTEE is used for
installing and running 3rd party TAs. From REE’s view, the
ta-vTEE is the default TEE on the phone. If a client app in
REE (i.e., CA) needs to install or interact with a TA without
specifying a vTEE ID, the requests will be served in ta-vTEE
by default. Wechat TA is installed in this ta-vTEE and lever-
ages the fingerprint authentication service provided by the
system-vTEE.
Now the Alipay app is installed in REE. The payment

app asks the TEE-visor to install a new signed vTEE named
“pay-vTEE”, which is designed for handling security critical

operations related to payment. The payment app then installs
three TAs in the pay-vTEE: a pay-TA for payment, a face-TA
for 2D facial authentication, and a risk-TA for risk analysis
based on client-side information. During the initialization,
the pay-TA generates a pair of private/public keys based on
the device certificate and sends the public key to the payment
server to bind the TA with user’s account. When making a
payment, the app asks the pay-TA to authenticate the user.
In case of using facial recognition, the pay-TA will invoke
the face-TA within the same vTEE. The face-TA then asks
the system-vTEE to get user’s face data (raw data) through
the frontend/backend I/O model. It then runs its own facial
recognition algorithm to authenticate the user. Throughout
the payment process, the risk-TA collects various device-
side information like GPS, time, etc., and run it through a
proprietary machine learning model to evaluate the risk of
the transaction.

The isolation between REE and the three vTEEs have sev-
eral benefits. First, the separation of system-vTEE and ta-
vTEE allows the former to have a very small TCB and thus
small attack surface. The system-vTEE does not host any
3rd party TAs. Second, the three TAs in the pay-vTEE are
isolated with the TAs in the ta-vTEE. In this case, it only re-
lies on the system-vTEE for fingerprint/face authentication.
If the payment app has even higher demand on security, it
can use the passthrough I/O mode. In either case, the private
key of the pay-TA is secure since no other vTEE can access
pay-vTEE’s memory and storage. Third, the three vTEEs are
restricted to access only the shared memory pages of REE.
These new abilities can significantly improve the security of
the entire system.
We have conducted an evaluation on different scenarios:

device unlock using password, device unlock using finger-
print, Alipay secure payment using fingerprint. The evalua-
tion was done using the Mediatek mobile phone. We have
registered five fingerprint templates before the test. Aliapy
TA relies on system-vTEE to provide fingerprint authentica-
tion service in this case. We measured the times of context
switch to TEE and the overall time cost of the entire opera-
tion, as shown in Table 5.

8 Related Work
Virtualization on ARM platform: Previous research on
ARM virtualization focused mostly on the REE side, e.g.,
Xen/ARM [36] and KVM/ARM [30, 33]. vTZ [35] virtualizes
the ARM TrustZone from the hardware’s perspective. Like
TEEv, vTZ also enables running multiple TEEs at the same
time. However, unlike TEEv, the purpose of vTZ is to sup-
port one secure world for each virtual machine in the normal
world for ARM server scenario, so that a virtual machine
can use smc to switch to its own secure world, while TEEv’s
purpose is to support multiple isolated vTEEs on mobile plat-
form. In other words, the difference between vTZ and TEEv

is that vTZ virtualizes TrustZone (hardware level) whereas
TEEv virtualizes TEE (software level). In vTZ, the behaviors
of virtualized secure world are exactly the same as native
secure world, which means that TEE still has higher privilege
than REE in the same virtual machine, and thus it cannot
defend against all the attacks we discussed in the paper. ARM
recently proposed s-EL2 on v8.4A, which is not available yet.
While the new hardware feature can ease the design of TEEv,
TEEv, as a pure software solution, can still benefit billions
of existing ARM devices.

Same-privilege Isolation: Same-privilege isolating, also
known as “intra-level isolation”, has been extensively stud-
ied on both x86 [32, 34, 48] and ARM platforms [23, 29]. In
our system, we leverage several techniques, such as TLB
lockdown, global TLB entries, entry gates etc., to ensure the
security and atomicity of context switching between differ-
ent address spaces without using dedicated page table. Our
design also minimizes the modification to existing software
stack in the secure world.

Hypervisor-based TEE: There are a number of designs
leveraging a hypervisor to provide an isolated execution
environment with a small TCB [26, 27, 41, 42, 45, 47, 49,
51–54]. Compared to these designs, TEEv has a different
goal and takes a different approach that results in smaller
TCB. There are a few mainstream hypervisors ported and
optimized for the ARM architecture [13, 20, 30, 40]. However,
these hypervisors are not suitable to be used directly in the
TrustZone environment.

Other Software-based TEE: There are many types of
TEE that are based on software, like Linux kernel [24, 28, 34],
or compiler [31, 32], to name a few. These researches are
orthogonal to our work. The design of TEEv is inspired
from these systems but solves a different problem and faces
different challenges.

9 Conclusion
In this paper, we propose vTEE, a virtualization architecture
for TEE to support multiple restricted TEE instances (aka.,
vTEEs). By introducing a tiny layer of hypervisor, vTEE in-
stances from different vendors can run on a single mobile
phone and each instance can host its own TAs. Different
vTEEs are isolated from each other. The TEE-visor also re-
stricts the capability of vTEEs so that they cannot access
arbitrary memory or peripherals as before. Meanwhile, our
system also supports controlled interaction between TAs
running on different vTEEs, which makes our system more
practical and deployable. The evaluation based on real de-
vices shows the effectiveness and efficiency of our system.

Acknowledgments
This work is supported in part by the National Key Research
& Development Program (No. 2016YFB1000104), and the Na-
tional Natural Science Foundation of China (No. 61772335).

References
[1] 2017. Google Project Zero. https://googleprojectzero.blogspot.com/

2017/07/trust-issues-exploiting-trustzone-tees.html.
[2] 2017. Introducing 2017s extensions to the Arm Architec-

ture. https://community.arm.com/processors/b/blog/posts/
introducing-2017s-extensions-to-the-arm-architecture.

[3] 2018. Alipay Member Protection. https://intl.alipay.com/ihome/user/
protect/memberProtect.htm.

[4] 2018. Android Fingerprint HAL. https://source.android.com/security/
authentication/fingerprint-hal.

[5] 2018. Android Gatekeeper. https://source.android.com/security/
keystore.

[6] 2018. Android Hardware-backed Keystore. https://source.android.
com/security/keystore.

[7] 2018. Antutu-benchmark. https://play.google.com/store/apps/details?
id=com.google.android.stardroid&hl=en.

[8] 2018. ARM Cortex-A57 MPCore Processor Technical Reference Man-
ual. http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.
ddi0488c/CHDDDHFD.html.

[9] 2018. ARM Cortex-A72 MPCore Processor Technical Reference Man-
ual. http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.
100095_0001_02_en/way1381846769141.html.

[10] 2018. GlobalPlatform. https://www.globalplatform.org/.
[11] 2018. Google Trusty. https://source.android.com/security/trusty/.
[12] 2018. OP-TEE. https://github.com/OP-TEE/.
[13] 2018. open virtualization. http://www.openvirtualization.org.
[14] 2018. Prove & Run. http://www.provenrun.com/.
[15] 2018. Qualcomm Security. https://www.qualcomm.com/products/

snapdragon/security.
[16] 2018. SierraTEE. https://www.sierraware.com/

open-source-ARM-TrustZone.html.
[17] 2018. TLB Lockdown Registers. http://infocenter.arm.com/help/index.

jsp?topic=/com.arm.doc.ddi0344h/Cihjdehg.html.
[18] 2018. TrustKernel T6. https://trustkernel.com.
[19] 2018. Trustonic Inc. https://www.trustonic.com/.
[20] 2018. Xen ARM with Virtualization Extensions. http://xenproject.org.
[21] Tiago Alves and Don Felton. 2004. TrustZone: Integrated hardware

and software security. ARM white paper 3, 4 (2004), 18–24.
[22] ARM. 2016. Connected devices need e-commerce standard security

say cyber security experts. https://goo.gl/1ePiQC.
[23] Ahmed M Azab, Peng Ning, Jitesh Shah, Quan Chen, Rohan Bhutkar,

Guruprasad Ganesh, Jia Ma, and Wenbo Shen. 2014. Hypervision
Across Worlds: Real-time Kernel Protection from the ARM TrustZone
Secure World. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 90–102.

[24] AhmedMAzab, Kirk Swidowski, JiaMa Bhutkar,Wenbo Shen, Ruowen
Wang, and Peng Ning. 2016. Skee: A lightweight secure kernel-level ex-
ecution environment for arm. In Network & Distributed System Security
Symposium (NDSS).

[25] Please! Bits. 2016. QSEE privilege escalation vulnerability and
exploit (CVE-2015-6639). http://bits-please.blogspot.hk/2016/05/
qsee-privilege-escalation-vulnerability.html.

[26] Haibo Chen, Fengzhe Zhang, Cheng Chen, Ziye Yang, Rong Chen,
Binyu Zang, Pen-chung Yew, and Wenbo Mao. 2007. Tamper-Resistant
Execution in an Untrusted Operating System Using A Virtual Machine
Monitor. Parallel Processing Institute Technical Report FDUPPITR-2007-
08001 (2007).

[27] X. Chen, T. Garfinkel, E.C. Lewis, P. Subrahmanyam, C.A. Wald-
spurger, D. Boneh, J. Dwoskin, and D.R.K. Ports. 2008. Overshadow: a
virtualization-based approach to retrofitting protection in commodity
operating systems. In Proc. ASPLOS. ACM, 2–13.

[28] Yaohui Chen, Sebassujeen Reymondjohnson, Zhichuang Sun, and Long
Lu. 2016. Shreds: Fine-grained execution units with private memory.
In Security and Privacy (SP), 2016 IEEE Symposium on. IEEE, 56–71.

[29] Yeongpil Cho, Donghyun Kown, Hayoon Yi, and Yunheung Paek. 2017.
Dynamic Virtual Address Range Adjustment for Intra-Level Privilege
Separation on ARM. In NDSS.

[30] Jason Nieh Christoffer Dall. 2014. KVM/ARM:The Design and Imple-
mentation of Linux ARM Hypervisor. In ASPLOS.

[31] John Criswell, Nathan Dautenhahn, and Vikram Adve. 2014. Virtual
Ghost: Protecting applications from hostile operating systems. ACM
SIGARCH Computer Architecture News 42, 1 (2014), 81–96.

[32] John Criswell, Nicolas Geoffray, and Vikram S Adve. 2009. Memory
Safety for Low-Level Software/Hardware Interactions.. In USENIX
Security Symposium. 83–100.

[33] Christoffer Dall, Shih-Wei Li, Jin Tack Lim, Jason Nieh, and Georgios
Koloventzos. 2016. ARM virtualization: performance and architectural
implications. In Proceedings of the 43rd International Symposium on
Computer Architecture. IEEE Press, 304–316.

[34] Nathan Dautenhahn, Theodoros Kasampalis, Will Dietz, John Criswell,
and Vikram Adve. 2015. Nested kernel: An operating system architec-
ture for intra-kernel privilege separation. In Proceedings of the Twenti-
eth International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, 191–206.

[35] Zhichao Hua, Jinyu Gu, Yubin Xia, Haibo Chen, Binyu Zang, and
Haibing Guan. 2017. vTZ: Virtualizing ARM TrustZone. In USENIX
Security.

[36] Joo-Young Hwang, Sang-Bum Suh, Sung-Kwan Heo, Chan-Ju Park,
Jae-Min Ryu, Seong-Yeol Park, and Chul-Ryun Kim. 2008. Xen on
ARM: System virtualization using Xen hypervisor for ARM-based
secure mobile phones. In Consumer Communications and Networking
Conference, 2008. CCNC 2008. 5th IEEE. IEEE, 257–261.

[37] Apple Inc. 2016. iOS Security Guide. https://www.apple.com/business/
docs/iOS_Security_Guide.pdf.

[38] Huawei Inc. 2016. Built-in TEE chip for enhanced security for
your private data. http://phoneproscons.com/716/huawei-honor-
magic/352/built-in-tee-chip-for-enhanced-security-for-your-private-
data/.

[39] Samsung Inc. 2018. Samsung KNOX. https://www.samsungknox.com/
en/knox-platform/knox-security.

[40] J, S Hwang, S Suh, C Heo, J Park, S Ryu, C Park, and Kim. 2008. Xen
on ARM: System virtualization using Xen hypervisor for ARM-based
secure mobile phones. In IEEE CCNC.

[41] Youngjin Kwon, Alan M Dunn, Michael Z Lee, Owen S Hofmann,
Yuanzhong Xu, and Emmett Witchel. 2016. Sego: Pervasive Trusted
Metadata for Efficiently Verified Untrusted System Services. In Pro-
ceedings of the Twenty-First International Conference on Architectural
Support for Programming Languages and Operating Systems. ACM,
277–290.

[42] Yanlin Li, Jonathan McCune, James Newsome, Adrian Perrig, Brandon
Baker, and Will Drewry. 2014. MiniBox: A two-way sandbox for x86
native code. In 2014 USENIX Annual Technical Conference (USENIX
ATC 14). 409–420.

[43] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. 2018. Meltdown: Reading
Kernel Memory from User Space. In 27th USENIX Security Symposium
(USENIX Security 18).

[44] Aravind Machiry, Eric Gustafson, Chad Spensky, Chris Salls, Nick
Stephens, RuoyuWang, Antonio Bianchi, Yung Ryn Choe, Christopher
Kruegel, and Giovanni Vigna. 2017. BOOMERANG: Exploiting the
Semantic Gap in Trusted Execution Environments. (2017).

[45] Nuno Santos, Rodrigo Rodrigues, Krishna P Gummadi, and Stefan
Saroiu. 2012. Policy-sealed data: A new abstraction for building trusted
cloud services. In Usenix Security.

[46] Mark Seaborn and Thomas Dullien. 2015. Exploiting the DRAM
rowhammer bug to gain kernel privileges. Black Hat 15 (2015).

https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html
https://community.arm.com/processors/b/blog/posts/introducing-2017s-extensions-to-the-arm-architecture
https://community.arm.com/processors/b/blog/posts/introducing-2017s-extensions-to-the-arm-architecture
https://intl.alipay.com/ihome/user/protect/memberProtect.htm
https://intl.alipay.com/ihome/user/protect/memberProtect.htm
https://source.android.com/security/authentication/fingerprint-hal
https://source.android.com/security/authentication/fingerprint-hal
https://source.android.com/security/keystore
https://source.android.com/security/keystore
https://source.android.com/security/keystore
https://source.android.com/security/keystore
https://play.google.com/store/apps/details?id=com.google.android.stardroid&hl=en
https://play.google.com/store/apps/details?id=com.google.android.stardroid&hl=en
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0488c/CHDDDHFD.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0488c/CHDDDHFD.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.100095_0001_02_en/way1381846769141.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.100095_0001_02_en/way1381846769141.html
https://www.globalplatform.org/
https://source.android.com/security/trusty/
https://github.com/OP-TEE/
http://www.openvirtualization.org
http://www.provenrun.com/
https://www.qualcomm.com/products/snapdragon/security
https://www.qualcomm.com/products/snapdragon/security
https://www.sierraware.com/open-source-ARM-TrustZone.html
https://www.sierraware.com/open-source-ARM-TrustZone.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0344h/Cihjdehg.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0344h/Cihjdehg.html
https://trustkernel.com
https://www.trustonic.com/
http://xenproject.org
https://goo.gl/1ePiQC
http://bits-please.blogspot.hk/2016/05/qsee-privilege-escalation-vulnerability.html
http://bits-please.blogspot.hk/2016/05/qsee-privilege-escalation-vulnerability.html
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.samsungknox.com/en/knox-platform/knox-security
https://www.samsungknox.com/en/knox-platform/knox-security

[47] A. Seshadri, M. Luk, N. Qu, and A. Perrig. 2007. SecVisor: A tiny
hypervisor to provide lifetime kernel code integrity for commodity
OSes. In Proc. SOSP.

[48] Lei Shi, Yuming Wu, Yubin Xia, Nathan Dautenhahn, Haibo Chen,
Binyu Zang, Haibing Guan, and Jinming Li. 2017. Deconstructing Xen.
In NDSS.

[49] Richard Ta-Min, Lionel Litty, and David Lie. 2006. Splitting interfaces:
Making trust between applications and operating systems configurable.
In Proceedings of the 7th symposium on Operating systems design and
implementation. USENIX Association, 279–292.

[50] TrustKernel. 2018. TrustKernel TEEReady. https://dev.trustkernel.
com/ready.

[51] Zhi Wang, Xuxian Jiang, Weidong Cui, and Peng Ning. 2009. Counter-
ing kernel rootkits with lightweight hook protection. In Proceedings
of the 16th ACM conference on Computer and communications security.
ACM, 545–554.

[52] Jisoo Yang and Kang G Shin. 2008. Using hypervisor to provide data
secrecy for user applications on a per-page basis. In Proceedings of
the fourth ACM SIGPLAN/SIGOPS international conference on Virtual
execution environments. ACM, 71–80.

[53] Fengzhe Zhang, Jin Chen, Haibo Chen, and Binyu Zang. 2011. Cloud-
Visor: retrofitting protection of virtual machines in multi-tenant cloud
with nested virtualization. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles. ACM, 203–216.

[54] Fengzhe Zhang, Yijian Huang, HuihongWang, Haibo Chen, and Binyu
Zang. 2008. PALM: security preserving VM live migration for systems
with VMM-enforced protection. In 2008 Third Asia-Pacific Trusted
Infrastructure Technologies Conference. IEEE, 9–18.

Appendices

https://dev.trustkernel.com/ready
https://dev.trustkernel.com/ready

Table 6. Vulnerabilities of TEEs. We select the CVEs that belong to TEE (either TA or TEE kernel). Some of CVEs (e.g., 2015-4421, 2014-4322
and 2016-3931) are located in the TEE driver of the REE OS, which are not included in this table.

Vendor Number Component Description

Qualcomm CVE-2014-9932/9933
/9935/9936/9937/9945
/9947/9948/9949/9951

TA or TEE Qualcomm did not publish details on these vulnerabilities. It only mentioned that they are caused
by integer overflow, time-of-check time-of-use race condition, buffer overflow, improper autho-
rization, improper validation of array index , information exposure, untrusted pointer dereference,
information exposure through timing discrepancy.

CVE-2015-6639/6647 TA The Widevine QSEE TrustZone application allows attackers to gain privileges via a crafted applica-
tion and execute arbitrary code within TEE. [25]

CVE-2015-8995/8996
/8997/8998/8999/9000
/9001/9002/9003/9005
/9007

TA or TEE Qualcomm did not release details on these vulnerabilities. It only mentioned that integer overflow,
buffer overflow, time-of-check time-of-use race condition, untrusted pointer dereference, informa-
tion exposure, out-of-range pointer offset, cryptographic issue, double free, etc.

CVE-2015-9031 TA or TEE A memory address of TrustZone can be exposed to the REE OS by HDCP.
CVE-2016-0825 TA The Widevine QSEE TrustZone application may leverage TEE kernel to get and leak data stored in

TEE’s secure storage.
CVE-2016-2431/2432 TEE allows attackers to gain privileges via a crafted application, TrustZone Kernel Privilege Escalation
CVE-2016-5349 TA When TAs receive memory addresses from REE such as Linux Android, those addresses have previ-

ously been verified as belonging to REE memory space rather than QSEE memory space, but they
were not verified to be from REE user space rather than kernel space. This lack of verification could
lead to privilege escalation within the REE.

CVE-2016-10237 TA If shared content protection memory were passed as the secure camera memory buffer by the REE
to a TA, the TA would not detect an issue and it would be treated as secure memory.

CVE-2016-10238 TA or TEE In QSEE the access control may potentially be bypassed due to a page alignment issue.
CVE-2016-10239 TA or TEE In TrustZone access control policy may potentially be bypassed due to improper input validation

an integer overflow vulnerability leading to a buffer overflow could potentially occur and a buffer
over-read vulnerability could potentially occur.

CVE-2016-10297 TA or TEE A Time-of-Check Time-of-Use Race Condition vulnerability could potentially exist.
CVE-2016-10333 TA or TEE A sensitive system call of TEE was allowed to be called by the REE OS. No other details.
CVE-2016-10339 TA or TEE The REE OS can overwite secure memory or read contents of the keystore within the TEE.
CVE-2017-0518/0519 TA or TEE An elevation of privilege vulnerability in the Qualcomm fingerprint sensor driver could enable a

local malicious application to execute arbitrary codewithin the context of the kernel. It first requires
compromising a privileged process.

CVE-2017-18125 TA The memory of the buffer used by the secure camera may be reused by untrusted world, which may
cause secret data leakage.

Hisilicon CVE-2015-4422 TEE When executing SMC instruction, a physical address pointed to TC_NS_SMC_CMD structure will
be sent to TEE. A malformed TC_NS_SMC_CMD gives an attacker a chance to write one byte to
almost any physical address. As there is no bound-checking, the attacker can modify any physical
memory except the memory used by TEE kernel.

CVE-2016-8762/8763
/8764

TA or TEE The TrustZone driver has an input validation vulnerability. An attacker can leverage BOOMERANG
and other techniques to obtain full root privileges of REE, as well as code execution within the TEE
itself.

CVE-2017-8142 TEE A use-after-free bug affects the TEE module driver.

OP-TEE CVE-2016-6129 TEE The problem lies in the “LibTomCrypt” code in OP-TEE, that neglects to check that the message
length is equal to the ASN.1 encoded data length. It makes OP-TEE vulnerable to “Bleichenbacher”
signature forgery attack.

CVE-2017-1000412 TEE The encryption library is vulnerable to the bellcore attack resulting in compromised private RSA
key.

CVE-2017-1000413 TEE The TEE is vulnerable a timing attack in the Montgomery parts of libMPA resulting in a compro-
mised private RSA key.

Motorola CVE-2013-3051 TEE The kernel of TEE is hacked, which enables an attacker to unlock the bootloader and load any
systems to run.

Other CVE-2017-6296 TEE Software contains a TOCTOU issue in the DRM application which may lead to the denial of service
or possible escalation of privileges. This issue is rated as moderate.

CVE-2017-6295 TEE NVIDIA TrustZone Software contains a vulnerability in the Keymaster implementation where the
software reads data past the end, or before the beginning, of the intended buffer; and may lead to
denial of service or information disclosure.

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 TEE Architecture
	2.2 Vulnerabilities of TEE
	2.3 Needs for Multiple Isolated TEEs

	3 System Overview
	3.1 Threat Model and Assumptions
	3.2 Challenges
	3.3 Overview of TEEv

	4 Design
	4.1 Isolation Enforcement
	4.2 Gate for Context Switching
	4.3 Interaction between vTEEs and vTEE/REE
	4.4 I/O Device Management

	5 Security Analysis
	5.1 Defending Against Existing Attacks
	5.2 Isolation Enforcement
	5.3 Discussion on Trust

	6 Implementation and Evaluation
	6.1 TEE Porting Efforts
	6.2 Implementation Complexity and TCB Size
	6.3 Performance Impact

	7 Real-world Case Study
	8 Related Work
	9 Conclusion
	References
	Appendices

