
Liu YT, Du D, Xia YB et al. SplitPass: A mutually distrusting two-party password manager. JOURNAL OF COMPUTER

SCIENCE AND TECHNOLOGY 33(1): 98–115 Jan. 2018. DOI 10.1007/s11390-018-1810-y

SplitPass: A Mutually Distrusting Two-Party Password Manager

Yu-Tao Liu1, Member, CCF, IEEE, Dong Du1, Yu-Bin Xia1,∗, Senior Member, CCF, Member, ACM, IEEE
Hai-Bo Chen1, Distinguished Member, CCF, Senior Member, ACM, IEEE
Bin-Yu Zang1, Distinguished Member, CCF, Member, ACM, IEEE
and Zhenkai Liang2, Member, ACM, IEEE

1Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University, Shanghai 200240, China
2School of Computing, National University of Singapore, Singapore 117417, Singapore

E-mail: {ytliu.cc, Dd nirvana, xiayubin, haibochen, byzang}@sjtu.edu.cn; liangzk@comp.nus.edu.sg

Received February 24, 2017; revised April 11, 2017.

Abstract Using a password manager is known to be more convenient and secure than not using one, on the assumption

that the password manager itself is safe. However recent studies show that most popular password managers have security

vulnerabilities that may be fooled to leak passwords without users’ awareness. In this paper, we propose a new password

manager, SplitPass, which vertically separates both the storage and access of passwords into two mutually distrusting parties.

During login, all the parties will collaborate to send their password shares to the web server, but none of these parties will

ever have the complete password, which significantly raises the bar of a successful attack to compromise all of the parties. To

retain transparency to existing applications and web servers, SplitPass seamlessly splits the secure sockets layer (SSL) and

transport layer security (TCP) sessions to process on all parties, and makes the joining of two password shares transparent

to the web servers. We have implemented SplitPass using an Android phone and a cloud assistant and evaluated it using

100 apps from top free apps in the Android official market. The evaluation shows that SplitPass securely protects users’

passwords, while incurring little performance overhead and power consumption.

Keywords password manager, privacy protection, mobile-cloud system

1 Introduction

Password-based authentication, though well-known

for its intrinsic weakness on security and usability[1],

still prevails on the Internet web service. As users typi-

cally have many web accounts and multiple Internet de-

vices (e.g., PCs, mobile phones, and tablets), they often

use a password manager to manage all the passwords,

not only for convenience, but also for security[2-3]. A

common password manager has two major components:

password storage and password filling. The passwords

are usually stored in one place, e.g., a database on a

PC 1○, in cloud 2○, or on a phone[4]. On the device side,

plugins or apps are installed to fetch passwords from

the database and auto-fill them.

Problem. Since a password manager controls all the

passwords, it becomes an attractive target for attack-

ers. If a user chooses to save the password database in

a local device (e.g., a laptop or a phone, as shown in

Fig.1(a)), then an attacker can directly get the database

if it manages to get physical access to the device. Even

if the password manager encrypts the database, it still

has to decrypt it in memory during password filling.

Even worse, the passwords may be in memory for a long

time after login. For example, the default email app in

Android maintains the password in plaintext in memory

at all times, and KeePass, another popular password

manager, also keeps its database in memory[5] until it

terminates. Thus, an attacker who gets full control over

Regular Paper

This work was supported by the National Key Research and Development Program of China under Grant No. 2016YFB1000104,
the National Natural Science Foundation of China under Grant Nos. 61572314 and 61525204, and the Young Scientists Fund of the
National Natural Science Foundation of China under Grant No. 61303011.

∗Corresponding Author
1○1password. http://1password.com, Dec. 2017.
2○Last pass. http://lastpass.com, Dec. 2017.

©2018 Springer Science +Business Media, LLC & Science Press, China

Yu-Tao Liu et al.: SplitPass: Mutually Distrusting Two-Party Password Manager 99

Storage

Server

Login Device

Memory

Assistant

Trust

Assistant

Mutual Distrust

Assistant

Mutual Distrust
X X

Login Device Login Device Login Device

(a) (b) (c) (d)

Fig.1. Comparison of different password managers. (a) Local password manager. (b) Assistant-based password manager. (c) Mutual
distrust (with server change). (d) SplitPass (no server change).

the device can steal passwords by memory scanning or

other sophisticated attacks[6].

The user may alternatively use an assistant-based

password manager which stores everything in an as-

sistant (e.g., a cloud or phone), as shown in Fig.1(b).

For example, LastPass 3○ stores users’ passwords on a

cloud, and only sends passwords to the device during

login. However, the cloud itself introduces new attack-

ing surfaces as it may now suffer from a single point of

breach. A malicious cloud operator can easily steal the

saved passwords[7]. Instead of saving passwords on a

cloud, Tapas[4] stores encrypted passwords on a trusted

device (e.g., a phone), and saves the key on users’ desk-

top PCs (here the PC is the login device). During the

login, the PC will ask the trusted device for the en-

crypted password, decrypt it in memory and send it

to the web server. However, both Tapas and LastPass

assume that the memory of the login device is secure,

which may unfortunately not be true. For example, an

attacker may plant a rootkit to the PC to keep moni-

toring the memory to retrieve users’ passwords.

The auto-filling feature of a password manager can

also be dangerous. An attacker can control a WiFi

router, inject a malicious form into a web login page,

fool a password manager to auto-fill the password,

and extract it without the user’s awareness[2]. Other

known issues include bookmarklet vulnerability, CSRF

(cross-site request forgery) and XSS (cross-site script-

ing) vulnerabilities[3].

Our Solution. In this paper, we aim to implement

a password manager that leverages two mutually dis-

trusting components for authentication. One naive im-

plementation is to require two independent passwords

to a single web site, with one password saved on the

login device and the other on an assistant (e.g., in a

cloud). The login device and the assistant mutually dis-

trust each other, which means that one can never send

its password to the other. Thus, an attacker needs to

compromise the login device as well as an assistant to

steal both passwords, which significantly raises the bar

of a successful attack. Such process of login is shown

in Fig.1(c). This, however, requires changes to both

the applications and server-side authentication process,

which hinders its adoption to existing applications.

To this end, we propose SplitPass, a password

manager for web services with transparent protection.

Based on a component on the device performing the lo-

gin and an assistant in the cloud, it requires changes to

neither the web server nor the client-side application.

In this paper, we focus on a specific scenario in which

the login device is an Android device and the assistant

is in a public cloud. Our solution can be easily adapted

to other environments, such as desktop browsers. A

password is then split into two shares: the first half is

stored on the device and the second half is on the as-

sistant cloud. During the login, both the device and

the cloud assistant will collaborate to assemble their

shares of password into the password expected by the

server. In this process, neither the login device nor the

cloud assistant gets access to the other’s share of the

password, and the process is transparent to the server.

More specifically, SplitPass not only puts the data

of the second half but also offloads the assembling pro-

cess of the second half. As secure web authentication

service is built upon SSL (secure sockets layer), the

two components of SplitPass work together to create

3○Lastpass. http://lastpass.com, Dec. 2017.

100 J. Comput. Sci. & Technol., Jan. 2018, Vol.33, No.1

an SSL login request, sharing the process of SSL record

encapsulation and network packet framing. SplitPass is

transparent to the server. For clients without SplitPass,

users can authenticate using the full password.

In order to be transparent to the server, SplitPass

needs to keep the integrity of SSL sessions as well as

TCP sessions between the device and the cloud assis-

tant. In another word, the cloud assistant should send

the second part of the password to the server on behalf

of the mobile device. This is implemented by synchro-

nizing states of both SSL and TCP sessions between

the device and the cloud assistant. Such state synchro-

nization still assumes the mutual distrust between the

two parties.

We have implemented SplitPass on Android by

modifying the SSL library in the Android framework.

Thus, all the apps using the default SSL library can

benefit from SplitPass without modification. Evalua-

tion using real apps shows that SplitPass securely pro-

tects users’ passwords while incurring little overhead on

performance and energy, and as well no impact on user

experiences.

Our primary contributions are as follows.

1) We study the current password management

schemes on mobile device, develop a threat model, and

introduce password splitting to improve the security as

well as the usability of password management.

2) We design a system named SplitPass, which is

an extension of current password-based authentication

mechanism. The server needs no modification to use

SplitPass, and in most cases, the apps also need no

change, which makes SplitPass a practical system that

is easy to deploy.

3) We implement SplitPass based on Android frame-

work, and use real apps for both security and perfor-

mance evaluation.

2 Background and Overview

2.1 Threat Model and Assumptions

SplitPass assumes a strong adversary model such

that an attacker can physically access a mobile device.

Thus, the entire memory and storage are vulnerable

through software or even physical attacks. The cloud

assistant for storing portion of the password is also un-

trusted, which can be compromised by hackers or ma-

licious operators. SplitPass assumes that an attacker

cannot compromise both the mobile device and the

cloud assistant at the same time. The two sides are

independent to each other and thus do not collude.

To sign into web-based services, the device needs to

have Internet connections. The pervasive cellular and

wireless network coverage makes the assumption real-

istic. SplitPass is mostly applicable to access to pass-

words with relatively short-term login processes, which

require network connection themselves.

We assume that apps on the mobile device log into

the servers through SSL connections and use the SSL

library offered by the Android system. In these apps,

passwords are used for authentication and are sent to

the servers directly. We assume that the users are aware

of SplitPass and will use SplitPass’ password format in-

stead of entering the full password on the device, be-

cause an app might be malicious, like a phishing app

that fools the user to input passwords.

SplitPass focuses on protecting passwords and as-

sumes that there are other ways to authenticate users

to access the passwords, like using fingerprints. It has

been shown that users tend to reuse passwords for diffe-

rent web accounts[8]. More than two-third users have

only four passwords for all of their web accounts. Some

users even use their bank passwords everywhere. Sup-

pose a user reuses a password of her/his bank account

as her/his Facebook password, as long as the password

is stored on her/his phone, an attacker could get it and

uses it to steal the user’s money.

2.2 Goals and Scope

Our primary goal is to offer strong protection of

passwords on mobile devices. More specifically, the

goals are as follows.

1) No Plaintext of the Full Password on Either Mo-

bile Device or the Cloud Assistant. The two mutually

distrust each other.

2) No Change to the Server. The server should not

be aware of the entire process of password splitting.

3) No Change to Applications. The system should

mostly retain backward compatibility to support exist-

ing apps.

Note that under our threat model, the attacker is

able to obtain secrets in devices’ memory and storage.

For example, when the user has signed into a web ses-

sion, the session cookie on a stolen device can be ex-

tracted by attackers. Under such scenarios, users need

to use short-lived sessions, or disable such sessions from

the server side when realizing the device is out of their

control. Our approach focuses on preventing attack-

ers from obtaining users’ passwords, and general device

data protection is out of the scope of this paper.

Yu-Tao Liu et al.: SplitPass: Mutually Distrusting Two-Party Password Manager 101

2.3 Background on SSL and TCP Sessions

Most applications nowadays use SSL to protect the

communication with the server from eavesdropping or

being tampered with. Data are first encapsulated to

SSL records and then framed to TCP packets. These

protocols maintain the related session and enable the

receiver to reassemble the records and packets. The

two layers of the session, one on the SSL layer and the

other on the TCP layer, bring opportunities as well as

challenges to our system. As an opportunity, the ses-

sions provide a standard way for data to be split and

merged, which makes it nature for SplitPass to send

part of the password from the cloud assistant, which

also means that the server does not need to be changed.

As a challenge, since the sessions involve many internal

states to maintain, the non-trivial task to synchronize

these states between the cloud assistant and the mobile

device is necessary.

Fig.2(a) shows the CBC (Cipher-Block Chaining)

encryption, which is commonly used in SSL. When an

application uses SSL to communicate with the server,

they establish an SSL session first by negotiating the

encryption algorithm, the MAC algorithm, the session

key for encryption, etc. During SSL transferring, the

data are first divided to multiple fragments, called SSL

records, whose size cannot exceed 16 KB. For each

SSL record, the SSL library will compress the data

Encrypt

Plaintext-1

Ciphertext-1 Ciphertext-2 Ciphertext-3

XORIV

Encrypt

XOR

Encrypt

XOR

(b)

(a)

16-Byte 16-Byte 16-Byte

500

32

100

132

16

500

516

10

132

516

10

142

152

16

516

Seq #

ACK #

Data (Size)
Seq #

ACK #

Data (Size)

Client

Server

Plaintext-2 Plaintext-3

Fig.2. SSL session and TCP session. (a) CBC in SSL session.
(b) Sequence number (Seq#) and ACK number (ACK#) in TCP
session.

(optional), calculate a MAC, and append it to the end

of the data. Then, the library will encrypt the data

using the chosen algorithm with the session key. The

basic data unit of encryption is a 16-byte block. If the

application uses CBC for stream encryption, then each

plaintext block will XOR its previous ciphertext block

before encryption. The first block will use a random

number as IV (initial vector). In this way, the integrity

of the entire session can be ensured. Any replacement

of the data block will be considered as attacks.

After encryption, an SSL header will be added to

each SSL record, and the records will be delivered to

the next layer, the TCP layer, for further process. Then

the data will go through TCP/IP stack in kernel, be

framed at different layers, and may be separated to mul-

tiple packets according to the limitation of maximum

size, and finally be sent to the network. The session in-

formation involves sequence number (Seq #) and ACK

number (ACK #) field in the TCP packet header, as

shown in Fig.2(b). For each side, the sequence number

is the sum of the last sent packet’s sequence number

and its data size, and the ACK number is the sum of

the last received packet’s sequence number and its data

size. Thus, the order of the packets is ensured by both

sides.

Once the server receives these packets, they go

through the TCP/IP stack in the opposite direction.

The data payload in different packets will be merged,

and the merged data is sent up to the user space.

Then the SSL layer will decrypt each SSL record, check

the MAC, decompress (optional), and merge data from

multiple records to a single one, which will be delivered

to application logic.

2.4 Overview

Fig.3 shows the overview process of cooperative lo-

gin in SplitPass, as well as all the components involved.

In the rest of the paper, we will use the password

“abcdef123456” as an example. It is split into two

parts: “abcdef” on the mobile device and “123456” on

the cloud assistant, which share a unique password ID.

The mobile device saves its half of the password to-

gether with a placeholder for the other half (we use

“XXXXXX” to represent it in this paper), i.e., “abcde-

fXXXXXX”. An app is not aware of SplitPass and uses

“abcdefXXXXXX” as the password to send out. When

an app uses the password to login, it will send an HTTP

request with the password to the SSL layer. The SSL li-

brary of SplitPass will identify the password and place-

holder, and split the data of the HTTP request into

102 J. Comput. Sci. & Technol., Jan. 2018, Vol.33, No.1

... ...

... &...

... &...

123456

123456
TCP

Session States

SSL
Session States

... &...123456

... 123456 &...

... ...

123456HTTP

SSL

TCP

... ...HTTP

SSL

TCP

... ...

... ...

... ...

... ...

... ...

HTTP

SSL

TCP

HTTP

SSL

TCP

Phone Phone

Server Server

Cloud

SSL Record Header

SSL Record
MAC

TCP Header

SSL Record

TCP Packet

Data Flow
Meta-Data Flow

Placeholder

&pass=abcdef123456& &pass=abcdefXXXXXX&

&pass=abcdef

&pass=abcdef

&pass=abcdef

&pass=abcdef123456&

&pass=abcdef

&pass=abcdef123456&

&pass=abcdef123456&

&pass=abcdef123456&

&pass=abcdef123456&

&pass=abcdef123456&

XXXXXX

(a) (b)

Fig.3. Overview of SplitPass. (a) Traditional system. (b) SplitPass with cloud assistant.

three SSL records: data before placeholder, the place-

holder itself, and data after placeholder.

The first record and the third record are directly

sent by the mobile device, while the second record will

trigger cooperative actions in the cloud assistant to send

its portion of the password on behalf of the mobile de-

vice. In order to enable the cloud assistant to join the

session initiated by the mobile device, it is needed to

synchronize the necessary states of the SSL session (e.g.,

the session key and the encryption method) and some

states of the TCP session (e.g., sequence number) be-

tween the cloud assistant and the mobile device, so that

the cloud assistant is able to generate a packet exactly

the same as the one that should be generated by the

mobile device, and the mobile device can continue the

SSL and TCP sessions afterwards.

The process is completely transparent to the server.

It will consider all the packets it received to be sent

from the mobile device. The TCP/IP stack and the

SSL layer on the server will merge the data automat-

ically since the splitting is done following the protocol

of each layer. Once the server gets the entire password,

it will do the authentication and rest of the login. The

cloud assistant will not get involved after sending the

packet containing the second password share.

The most critical part of the cooperative login is the

states synchronization between the mobile device and

the cloud assistant at both SSL and TCP layers. Other

layers, like the IP layer, are stateless and thus do not re-

quire state synchronization. In the SSL layer, SplitPass

changes the SSL library and develops the SSL session

injection technology to retain the integrity of the SSL

session between the mobile device and the cloud assis-

tant, which considers different encryption methods. In

the TCP layer, in order to avoid changes to TCP/IP

stack in the kernel, SplitPass develops the packet re-

framing technology to synchronize the TCP states be-

tween the mobile device and the cloud assistant. These

two technologies will be further described in Section 3.

3 Design

We have derived inspiration from network routing

when designing SplitPass. Our system is divided into

two parts: a “control plane” and a “data plane”. The

control plane is sets of rules that control how the data

flows, while the data plane is the mechanism that ac-

tually moves the data according to the rules.

More specifically, all the policies of SplitPass’ con-

trol plane are saved in three tables, as Fig.4 shows.

Two of them are saved on the mobile device, named

LPT (local password table) and RRT (redirect rule ta-

ble), and one is saved on the cloud assistant named CPT

(cloud password table). These tables are updated when

adding or removing passwords. In the data-plane, the

password will flow among the mobile device, cloud and

server according to these policies of the control plane.

In this section, we will first describe the data plane to

Yu-Tao Liu et al.: SplitPass: Mutually Distrusting Two-Party Password Manager 103

demonstrate how the password is split and merged, be-

fore showing how to configure the control plane.

CPT

Phone

Server

Cloud

User

TCP Packet

RRT

LPT

Control Plane

Data Plane

XXX
XXX

2

3

123
456

2

abc
def

1

Fig.4. Control plane and data plane of SplitPass.

There are many challenges in the design and im-

plementation, among which the most important one is

how to keep SplitPass transparent to the existing sys-

tem as much as possible. While SplitPass requires no

change to the server, the modifications to the software

on mobile devices should also be minimized to make the

system practical. In SplitPass, we only change the de-

fault SSL library on the mobile device. Since most apps

use the default library for login, they can use SplitPass

transparently.

3.1 Data Plane: Cooperative Login

This subsection describes the process of cooperative

login with much more details. As mentioned, the mo-

bile device needs to identify and split the password, as

well as redirecting the network packet containing the

placeholder to the cloud assistant. The cloud assistant

first checks the destination address, then reframes the

packet with the real half-password, and sends it to the

server.

3.1.1 Dataflow on the Phone

During the login, both the username and the pass-

word will be put in an HTTP request in the memory

buffer and delivered to the underlying SSL library as

shown in Fig.5. The SSL library will check every buffer

according to the password table, to find whether the

buffer contains the first half of some password and the

placeholder. Once found, the SSL library will split the

buffer into three sub-buffers. The first sub-buffer is

ended with the first half of the password, the second

sub-buffer simply contains the placeholder of the sec-

ond half of the password, and the third one is the rest

of the buffer. The three sub-buffers are processed by

the SSL library to generate three SSL records, which

are later encapsulated into network packets.

The next step is to make the cloud assistant send

1st Half

Local Password Table

abcdef XXXXXX

ID

24

HTTP
POST…?user=bob&pass=abcdef XXXXXX&num=2...

SSL

(Changed)

TCP/IP Stack
XXXXXX

Match

APP

OS

TCP Packet

Control

Plane
User

Change Destination to Cloud IP

XXXXXX

SSL Record

cdef XXXXXX&n

XXXXXX

Mark This SSL Record

Packet Filter

Hardware

Redirect Rule Table

SSL

Protocol

Marked

Feature

Redirect

Action

Match

Placeholder

LIB

(Unchanged)

(Unchanged)

(Unchanged)

(Enabled)

POST…?user=bob&pass=abcdef

POST…?user=bob&pass=abcdef

POST…?user=bob&pass=abcdef

 &num=2...

 &num=2...

 &num=2...

Fig.5. Password splitting and packet routing on the client.

104 J. Comput. Sci. & Technol., Jan. 2018, Vol.33, No.1

the packet containing the second part of the password

to the server on behalf of the mobile device. One naive

way is to send all of the necessary states of TCP and

SSL sessions to the cloud assistant and make it frame

a packet from scratch. However, this solution requires

changing the TCP/IP stack on the mobile device to

synchronize states like TCP sequence number with the

cloud assistant. Such implementation is complex and

requires a lot of OS (operating system) hacking.

SplitPass uses a better solution for TCP state syn-

chronization. Instead of skipping the placeholder, the

mobile device actually sends it out, thereby there is

no need to manually maintain the states in TCP/IP

stack. But just before the packet is sent out, Split-

Pass intercepts the packet with packet filter (which is

already supported by Linux kernel, we just enable it)

and redirects it to the cloud assistant. In order to do

so, SplitPass marks the second SSL record by recording

password ID in the type field in the SSL record header,

and creates a redirect rule to make the packet filter in-

tercept and redirect the marked packet (more details

are in Subsection 3.2).

Meanwhile, the SSL layer sends necessary metadata

of the current SSL session to the cloud assistant, which

includes the IP address of the server, the password ID,

and the SSL internal information like the session key

and the encryption method. The cloud assistant needs

this information to reframe the redirected packet.

3.1.2 Dataflow on the Cloud Assistant

Fig.6 shows the dataflow on the cloud assistant. The

cloud assistant gets two types of data from the mobile

device: the metadata and the redirected packets. Both

data contain the password ID. Thus the cloud assis-

tant can pair them and find the record in CPT. It then

checks whether the IP in metadata belongs to the do-

main in the whitelist of the password, to ensure that a

password can only be sent to legal server (more details

of the whitelist are in Subsection 3.3).

When the checking is done, the cloud assistant will

encrypt the second part of the password using the SSL

session key and the specific encryption algorithm spe-

cified in the metadata. It will generate an encrypted

SSL record and replace the payload of the packet. It

also changes the destination IP in the TCP header to

the server’s IP and sends it. The source IP address

of the packet is still the mobile device’s IP; thus the

server will consider the packet as if it is sent by the

mobile device.

ID

Cloud Password Table

24 123456

Domain

Facebook

Phone Server

Cloud

XXXXXX 123456

IP=Facebook IP

Session Key=

Pass ID=24

Pass ID=24

SSL Encrypt by

Metadata

Src IP: Phone’s IP

Dst IP: Facebook IP

2nd Half

Fig.6. Packet reframing on the cloud assistant.

Finally, the packet with correct substring of the

password is sent out by the cloud assistant to the server.

The server receives three continuous packets with the

mobile device’s IP address, and simply combines them

into one buffer that contains the complete password. It

then proceeds to do authentication, and finally returns

the result to the mobile device. The server is not aware

of the cloud assistant at all.

The process also works even if the placeholder

packet is lost by either the mobile device or the cloud

assistant. In that case, the TCP/IP protocol will make

the mobile device resend the lost packet, which will be

intercepted again by the packet filter and be redirected

to the cloud assistant to do the rest.

An alternative design is to leverage MPTCP (Multi-

Path TCP) 4○, a protocol that is getting more and more

popular. MPTCP can greatly simplify the process of

TCP session join between the device and the cloud as-

sistant. From a server’s perspective, the packet sent by

the cloud assistant is from another valid TCP path, and

will be merged with other packets sent by the mobile

device. Using MPTCP is part of our current work.

3.1.3 SSL Session State Synchronization

In SplitPass, it is required to migrate a part of SSL

session from the device to the cloud assistant. For

different stream encryption algorithms (e.g., RC4 5○ or

CBC 6○ as introduced in Subsection 2.3), the states of

SSL sessions that need to be synchronized between the

mobile device and the cloud assistant are different. For

4○Multipath TCP. http://en.wikipedia.org/wiki/Multipath TCP, Dec. 2017.
5○https://en.wikipedia.org/wiki/RC4, Dec. 2017.
6○https://en.wikipedia.org/wiki/Block cipher mode of operation#CBC, Dec. 2017.

Yu-Tao Liu et al.: SplitPass: Mutually Distrusting Two-Party Password Manager 105

example, in RC4 algorithm, it only needs to synchronize

the metadata of the SSL session, since each ciphertext

block is independent from one another. While in CBC

algorithms before TLS-1.1 version, it uses the implicit

IV mechanism, in which each SSL record uses the last

ciphertext block of the previous record as its IV, thus

the last ciphertexts of both the mobile device and the

cloud assistant are required to be sent back to each

other as IV. This process makes the other half of the

password insecure.

Take Fig.7(a) as an example, in this situation, af-

ter encrypting block-11, the phone is required to send

ciphertext-11 to the cloud assistant as IV for encrypt-

ing block-12, and the cloud assistant will send back

ciphertext-12 to the phone after the encryption. Thus,

it is easy for a malicious phone to derive content of

block-12 by decrypting the ciphertext of block-12 and

then XORing with ciphertext-11:

P12 = decrypt(C12)key ⊕ C11.

Here, P stands for plaintext, C stands for ciphertext,

and ⊕ stands for XOR operation.

Encrypt

Block-12

Ciphertext-12

XOR

Encrypt

Block-13

Ciphertext-13

XOR

Encrypt

Block-11

Ciphertext-11

XOR

Encrypt

Block-10

Ciphertext-10

Ciphertext-12 Ciphertext-13Ciphertext-11Ciphertext-10

XOR...

SSL Record-1 SSL Record-2 SSL Record-3

Encrypt

XOR

Encrypt

XOR

Encrypt

XOR

Encrypt

XORIV-1

(a)

(b)

Block-12 Block-13Block-11Block-10

IV-2 IV-3

}
}

Fig.7. Security issue when using TLS-1.0. An attacker can in-
fer block-12 by block-11 and block-13. (a) CBC with implicit IV
(before TLS-1.1). (b) CBC with explicit IV (TLS-1.1 and later
verisons).

It means the plaintext of block-12 (the second half

of the password) can be derived by XOR the plaintext

of ciphertext-12 and ciphertext-11. Now the malicious

phone gets the full password.

Re-using the last ciphertext block as IV is known to

be insecure 7○ for a long time. As a result, from TLS-

1.1, each SSL record uses a separated IV, as known as

explicit IV. Thus, IV is not needed to be synchronized,

as shown in Fig.7(b). We found that before Android

5.0, the default SSL library is TLS-1.0, and from An-

droid 5.0, the default one is TLS-1.2. Thus, we modify

Android SSL library to ensure that the SSL version

used is newer than TLS-1.0.

3.2 Control Plane: Initialization

In the setup phase, the mobile device and the cloud

assistant are configured for being paired with each

other, as well as for password creating and deleting.

The cloud assistant offers four APIs for pairing and

operating on passwords, while on the mobile device, we

develop an app for configuration. All the configuration

information is stored in three tables: CPT, LPT, and

RRT. The configuration of the control plane is totally

independent with that of the data plane, which means

the user can configure the cloud assistant using any de-

vice.

3.2.1 Cloud Configuration API

The four APIs provided by the cloud assistant are

listed in Fig.8, and operate the CPT. The user first

needs to create a CPT on the cloud assistant through

CREATE TABLE(). The cloud assistant will bind the

table with the user account. After that, the user can

list all the passwords of the CPT (without the plaintext

of the password), insert a new password or delete exist-

ing ones. Each entry in the CPT contains four fields:

ID, the plaintext of the half-password, a whitelist of le-

gal domains that the password could be sent to, and

a string description. The domain whitelist is used to

limit the destination of the password.

It should be noted that the cloud assistant does

not have an UPDATE PASS() API for security reason.

If a user does need to update a record, he/she could

delete it first and then add a new one. If the cloud

assistant offers UPDATE PASS(), an attacker who has

controlled the mobile device may use it to add a ma-

licious site to the whitelist of a password, and issue

a login using the password. In that case, the cloud

assistant’s half-password will be sent to the malicious

site controlled by the attacker who has already owned

the other half-password on the mobile device. In con-

trast, ADD PASS() and DELETE PASS() do not need

to trust the caller, since the former requires a password

as a parameter which the attacker does not have, while

7○Block cipher mode of operation. http://en.wikipedia.org/wiki/Block cipher mode of operation, Dec. 2017.

106 J. Comput. Sci. & Technol., Jan. 2018, Vol.33, No.1

API 1: CREATE TABLE(): Creating a Table to Store Password

1. User initiates a registration request to the cloud assistant using SSL/TLS protocol, provided with his/her self-signed
certificate, as well as the account information like username and password.

2. Cloud creates a CPT, and binds it with the user’s account and certificate.

API 2: LIST TABLE(): Listing Records of the Cloud Data Table

1. User initiates a list request to the cloud assistant.

2. Cloud authenticates the user, retrieves all records from the binding operation table, removes all the plaintext of the
password.

3. Cloud returns the newly generated records list to the user.

API 3: NEW PASS(): Inserting a Record to the Cloud Password Table

1. User initiates an insertion request to the cloud assistant, which contains the plaintext of half password, as well as a legal
domain that the password is allowed to be sent to.

2. Cloud authenticates the user, inserts the record to the CPT, and generates a unique ID for it.

3. Cloud returns the ID to the user.

API 4: DELETE PASS(): Deleting a Record from the Cloud Password Table

1. User initiates a deletion request to the cloud assistant with a specific ID of the record.

2. Cloud authenticates the user, deletes the record from the binding operation table.

Fig.8. APIs provided by the cloud assistant.

the latter can only be used to DoS attack which is easy

to be discovered by the user.

3.2.2 Mobile-Side Configuration

In order to initialize a password, it is not enough to

add only a half-password in the cloud assistant. The

other half should be added to the LPT (local password

table) on the mobile device. Each record of LPT is

composed of the plaintext of the first half of the pass-

word, the placeholder of the second half, and the ID of

the password which is obtained from the return value

of the invocation of ADD PASS() to the cloud assis-

tant. We offer an app on the mobile device to add

and remove records to and from LPT. The app also

uses LIST TABLE() to get the entire list of passwords

stored on the cloud assistant (without the plaintext of

the second half).

In order to send the packet with the placeholder to

the cloud assistant, SplitPass leverages packet filter to

redirect the packet. Thus before using the system, the

redirect rules table (RRT) should be initialized. The

rule looks like this: if a packet is an SSL packet and

is marked (in our implementation, we mark a packet

by saving the password ID in the SSL type field in the

SSL header), then we change its destination IP to the

cloud assistant’s IP. If more than one cloud assistant is

used, there will be one rule for each cloud in the RRT.

Our prototype uses only one cloud assistant, thereby

the RRT contains only one rule.

3.2.3 Usability Enhancement: Initializing Both

Shares on the Phone

We implement one control app on the mobile de-

vice to support secure cloud initialization. Users are

required to firstly divide the passwords into two parts

to their own liking, and input both parts in the control

app, which will then automatically synchronize the sec-

ond half to the cloud assistant, and eliminate it from the

phone afterwards. However this process may introduce

some security problems. Consider this scenario: when

a user installs a new app and wants to use SplitPass

to protect its password, he/she needs to input both the

first and the second half of the password into the mobile

device. If the mobile device has already been infected

by some malware like keylogger, the full password might

be stolen.

One possible solution is to use another secure en-

vironment (like a PC) to configure the cloud assistant

instead of initializing on the mobile device; however,

it may reduce the usability of SplitPass. In order to

avoid this inconvenience, we extend the control app

to use secure hardware, named TrustZone[9], to offer

a trust path between the user and the cloud assistant

to ensure the privacy and integrity of data along the

path. Briefly, TrustZone divides the runtime into se-

Yu-Tao Liu et al.: SplitPass: Mutually Distrusting Two-Party Password Manager 107

cure world and normal world. The control app runs

inside the secure world, which is isolated from the nor-

mal world that the Android runs in. Any malware in

Android cannot access the data of secure world while

the control app can access memory or storage of the

normal world. The implementation of the trust path is

based on our previous work[10] and is out of the scope

of this paper.

One question is why not directly use TrustZone

to protect apps’ passwords instead of using SplitPass.

There are mainly three reasons. First, it is not suit-

able for an app to run inside the secure world, since

it may run many other components inside the secure

world as well, which will significantly increase the TCB

(Trusted Computing Base) and make the secure world

not secure. Second, in order to keep the TCB small,

the apps have to be changed. For example, a piece

of login-related code runs inside the secure world, while

the other code runs in the normal world. Thus it cannot

keep compatibility with current apps. Third, TrustZone

is not physically secure, which means that an attacker

can still access the memory of secure world by some

physical attack. Thus, an attacker might steal the full

password during the process of login.

3.3 Whitelist-Based Server Authentication

There are many authentication methods among the

mobile device, the cloud assistant, and the web server

determined by the different requirements of each of the

entities, as well as by the available information they

have. From the mobile device’s perspective, it authen-

ticates the web server and the cloud assistant by their

certificates. The server authenticates the mobile device

by users’ password. The cloud assistant identifies the

mobile device by its certificate, which is bound dur-

ing initialization. It also needs to recognize the server,

since it needs to send half-password to the server. Ac-

cording to our threat model, the cloud assistant does

not trust the mobile device. An attacker who has con-

trolled the mobile device may let the cloud assistant

send half-password to some malicious server owned by

the attacker. Thus, once it receives a request to send

half-password to some IP address, the cloud assistant

must decide whether the IP is secure for the password.

SplitPass solves this problem by using a whitelist of

domains for each half-password, and makes sure that

the half-password could be sent to an IP that belongs

to one of the domains within the whitelist. However,

the granularity of the domain sometimes can be too

coarse-grained. For example, if an attacker controls a

mobile device, even with domain-level whitelist enforce-

ment, he/she can still steal the user’s Facebook pass-

word by sending it to his/her own Facebook page as a

comment. Since the target IP is within the Facebook’s

domain, the cloud assistant will not block the network.

Fortunately, we observe that most well-known web

sites (e.g., Google, Facebook, Linkedin) have dedicated

machines to do the authentication, which means the

authentication IP addresses are different from others.

Thus, in the cloud assistant, the whitelist granularity

can be further optimized to only allow IPs that are re-

sponsible for authentication. When such IP addresses

are changed by the server, the cloud assistant can up-

date the whitelist automatically without users’ inter-

vention. Meanwhile, most of the web sites, like bank

sites, do not support users to post contents.

4 Security Analysis

In this section, we discuss the security of SplitPass

under two attacking scenarios: the mobile device is

physically controlled, and the cloud assistant is fully

compromised. We also discuss the limitations of Split-

Pass.

4.1 Scenario 1: Fully-Compromised Phone

Once the mobile device is physically controlled by

an attacker, the portion of the password on the mobile

device is leaked, as well as the certificate of the mobile

device. Thus, the attacker will try to issue attacks from

the mobile device to the cloud assistant to get the sec-

ond half. Since the cloud assistant will never send its

part of the password to the mobile device, the attacker

must use other ways to attack.

First, the attacker may try to infer the cloud portion

of the password from the syncing states. Such an attack

will fail, as we have discussed in Subsection 3.1.3.

Second, the attacker may try to fool the cloud as-

sistant and let it send the cloud portion to a malicious

server controlled by the attacker. This attack will not

succeed since the cloud assistant will check the ope-

ration table to ensure the destination server is in one

of the domains of the password’s whitelist. Otherwise,

the cloud assistant will refuse to send the password.

Third, the attacker may try to modify the operation

table, by deleting all of the entries of the cloud pass-

word table. We use backup mechanism on the cloud to

defend against such a DoS attack. The attacker may

also insert malicious entries into the table, with faulty

108 J. Comput. Sci. & Technol., Jan. 2018, Vol.33, No.1

ID or/and domain whitelist. All these behaviors can

neither steal the second part of the password directly

nor send it to some malicious sites.

The length of the placeholder can be different from

the length of the second half-password, which means

that the mobile device does not know the length of the

half-password saved on the cloud assistant. SplitPass

only depends on the fact that the length of the TCP

packet generated from the placeholder on the mobile

device is the same with the one generated from the

second half-password on the cloud assistant, in order

to keep the sequence number not changed in the redi-

rected TCP packet. Since the encryption in SSL is done

on the unit of block, padding will be added to keep data

aligned. For example, if the length of the second half-

password is 8 bytes, and its placeholder’s length is 6

bytes, they will generate SSL records with the same

size and also same-sized TCP packets.

4.2 Scenario 2: Fully-Compromised Cloud

Once the cloud assistant is fully controlled by at-

tackers or malicious operators, the entire cloud pass-

word table is leaked, as well as the metadata including

the session key of current SSL session on the mobile

device. Then the attacker will try to steal the mobile

portion of the password. However, since the cloud assis-

tant only takes command from the mobile device, there

is no way for an attacker to issue attacks through our

protocol.

Although the attacker can get the SSL session key,

it cannot get any other data in the same session, and

the key will be useless when the session is time-out.

One possible side-channel attack is that an attacker

may get the information of the time and frequency of

users’ login. However, there is no direct way for an

attacker to know the user’s identity. Thus such infor-

mation will be less (if any) useful in other attacks.

4.3 Scenario 3: Man-in-the-Middle Attack

MITM (Man-in-the-Middle) attacks can happen be-

tween the device and the cloud assistant, between the

cloud assistant and the server, and between the de-

vice and the server. Since each pair uses (independent)

SSL session to protect their communication, an attacker

cannot directly get plaintext by an MITM attack.

One case is that an attacker who has already gained

full control over the mobile device issues an MITM at-

tack between the cloud assistant and the server. Since

the attacker has the session key from the device, he/she

can decrypt the SSL communication and get the sec-

ond half-password. However, it is not trivial to issue

an MITM attack between the cloud assistant and the

server, and we can slightly extend our design to fur-

ther increase the difficulty. One extension is that once

generating a reframed packet, the cloud assistant will

first send it to some random node also within the cloud,

which then sends the packet to the server. The random

node works as a relay. The communication between the

two cloud nodes is protected by a new SSL session to

defend against MITM attacks. Since it is hard for an

attacker to predict where the random node will be, such

a design increases the difficulty of eavesdropping.

Another case is that the attacker compromises the

cloud assistant, and tries to set up an MITM attack be-

tween the mobile device and the server. However, it is

difficult to locate the users’ devices and redirect users’

connection to the attacker’s server.

4.4 Scenario 4: Phishing Attacks and Others

SplitPass can defend against phishing attacks. Even

if a user opens a phishing web site and enters the pass-

word (which is the first half and the placeholder for the

second half), the malicious site can only get the mo-

bile portion of the password. Because once the mobile

device requires the cloud assistant to send its portion,

the cloud assistant will check the whitelist of the pass-

word and refuse to send its portion of the password to

the phishing site. Similarly, if an attacker uses attacks

listed in [2-3], the cloud assistant will also reject to send

its password share to the malicious sites.

4.5 Discussion and Limitations

User Impersonating Attack. One possible scenario

is that an attacker steals the phone and pretends to be

the user to access the password to login. This problem

is about how to authenticate the user and is orthogo-

nal to the problem of password protection that Split-

Pass addresses, which is out of the scope of this paper.

There are various methods for user authentication, e.g.,

by using PIN code, fingerprints, users’ faces. We could

simply extend SplitPass to leverage such authentica-

tion mechanisms so that both the phone and the cloud

assistant can check current user’s identity every time

when a password is accessed. The basic idea is to let

the server send a nonce to the device, which requires

users to input their fingerprints. The fingerprint scan-

ner will check the fingerprint, then encrypt the nonce

with a private key, and send it to the cloud assistant.

Yu-Tao Liu et al.: SplitPass: Mutually Distrusting Two-Party Password Manager 109

The cloud assistant will check the nonce with the cor-

responding public key. The privacy and public keys

are deployed during initialization, and the privacy key

is stored on device in sealed storage like TPM, which

can defend against physical attacks. If the device does

not have a fingerprint scanner, it can use PIN code and

similar protocol implemented in secure hardware like

TrustZone. Even if the device does not use any of the

methods, SplitPass can still offer better password pro-

tection than any current password managers.

Deployability. In our experience of deploying Split-

Pass to real cloud environments, we find that some

cloud providers treat packet reframing as IP spoofing,

which makes the reframed packet be filtered by firewall,

while some other cloud platforms do not. SplitPass re-

quires the cloud to allow to send the reframed packets.

A user can either choose an available public cloud, or

build his/her own private cloud to do so. Another way

is to use another machine or mobile device as a relay, as

described above, so that the cloud itself does not deliver

the packet directly. Meanwhile, using MPTCP can also

mitigate the IP spoofing problem, as we mentioned in

Section 3.

User Experience Issues. Before using SplitPass in

an app, the user needs to initialize two parts of the

password on the mobile device and the cloud assistant,

which might increase the burden of using. We argue

that such initialization is a one-time effort and can be

done in a batch. Meanwhile, the password initializa-

tion has already be automated by the control app in

the mobile device as explained in Subsection 3.2, so

that the user only needs to input the two halves of the

password and the placeholder of the second half into

the textboxes provided by the control app. For pass-

word entering during login, the user is required to in-

put the first half plus the placeholder of the second half

(as shown in Subsection 2.4). This does not influence

the users’ experience. If the user does not want to use

SplitPass protection, he/she can still choose to input

the complete password to bypass the SplitPass process.

Generalization. SplitPass is a general framework

that can be used not only for mobile devices, but also

for other environments such as desktop PC and laptop,

as long as the server uses the password for authentica-

tion. Our system is also not limited to use only two

nodes. If users require more secure solutions, they can

split the password into more than two parts and use

more cloud assistants accordingly.

5 App Compatibility Evaluation

In this section, we evaluate the compatibility of

SplitPass with existing Android apps. SplitPass re-

quires that the apps should use Android default

OpenSSL library, and they should send the password

to SSL in plaintext so that SplitPass is able to match

and replace. We pick up 100 Android apps from the

top of each category to check how many apps satisfy

these two requirements. Meanwhile, we also analyze

the cipher algorithm and version used.

5.1 Compatibility Evaluation

We choose 100 apps from the top free apps in diffe-

rent categories on the Google Play, which require au-

thentication. We analyze which encryption algorithm

and version they use, whether they use the default SSL

library (OpenSSL), and whether they send the pass-

word in plaintext to the SSL layer. From Table 1, we

can conclude that most of the apps (98 out of 100) use

Android default SSL and CRYPTO libraries, while in

the other two apps (i.e., HealthKartPlus, and TNP), we

cannot intercept any record in the SSL layer. Among

Table 1. Apps Usage of SSL and CRYPTO Libraries, SSL/TLS Version, Cipher Algorithm in Android 4.1.2

App # Use Default Password TLS Version Encryption Algo. Hash Algo. Supported

Category Libraries Invisible 1.0 1.1 1.2 RC4 AES128 AES256 SHA MD5

Social 20 20 1 20 0 0 12 5 3 17 3 19

Communication 20 20 4 20 0 0 15 3 2 15 5 16

Productivity 10 10 1 9 0 1 5 1 4 9 1 9

Finance 10 10 0 10 0 0 6 3 1 9 1 10

Music & audio 10 10 0 10 0 0 8 2 0 9 1 10

News & magazines 10 9 2 9 0 0 4 4 1 7 2 7

Shopping 10 10 0 10 0 0 4 5 1 9 1 10

Medical 5 4 0 4 0 0 1 2 1 4 0 4

Photography 5 5 0 5 0 0 4 0 1 3 2 5

Summary 100 98 8 97 0 1 59 25 14 82 16 90

Note: Algo.: algorithm; #: the number of tested applications.

110 J. Comput. Sci. & Technol., Jan. 2018, Vol.33, No.1

these 98 apps, there are eight apps (e.g., Skype, Ever-

note) that may do some hashing of the password be-

fore sending it to the SSL library, so that the Split-

Pass mechanism cannot support them since we need

the plaintext of the first half of password to identify

specific SSL record. Thus, SplitPass can support 90

out of the 100 apps without any modification.

5.2 SSL Usage Summary and Discussion

Another interesting topic is how most Android apps

use SSL and CRYPTO libraries. The analysis done by

Fahl et al.[11] revealed that there are various forms of

SSL/TLS misuse in current Android apps, and about

8% apps examined contain SSL/TLS code that is poten-

tially vulnerable to MITM attacks. In our evaluation

we find that even if there is no misuse caused by deve-

lopers, there are still some security issues in the phase

of SSL version and cipher algorithm selection.

In Table 1, we use TLS 1.0 to TLS 1.2 to represent

SSL 3.1 to SSL 3.3, respectively. For the encryption

algorithm classification, RC4 is a widely used stream

cipher that uses a pseudo-random keystream to en-

crypt plaintext using bit-wise exclusive-or. AES128 and

AES256 are other two kinds of block ciphers used by

some of the mobile apps, with 128-bit key and 256-bit

key, respectively. In our experiment, the AES cipher al-

gorithm uses CBC encryption by default, as described

in Subsection 3.1.3. The CBC encryption algorithms

can be classified into two categories: one with implicit

IV and its padding must be less than the cipher’s block

length (TLS 1.0), and the other with explicit IV and

its padding can be any integral multiple of the block

cipher’s block length, up to 255 bytes (TLS 1.1 and

above).

From Table 1, we find that there are 59 apps using

RC4 encryption algorithm, which is considered prob-

lematic since 2002[12], and among the 39 apps which

use AES CBC algorithms, 38 of them are using TLS

1.0. In TLS 1.0, CBC uses implicit IV and its padding

must be less than the cipher’s block length, where there

is a well-known theoretical client-side SSL attack called

BEAST 8○ (CVE-2011-3389) targeting at it. Among

these 100 apps, we find that only Dropbox uses AES

CBC algorithms with TLS 1.2 version.

In order to figure out why so many applications use

RC4 encryption algorithm, we intercept the network

flow in SSL Handshake phase and find that the Cipher-

Suite list 9○ 10○ puts RC4-MD5 cipher first, and uses the

order like: RC4-MD5 > RC4-SHA > AES128-SHA >

AES256-SHA. That is why most of the app servers ac-

tually choose RC4 as their encryption algorithm, even

if it is the most unsecure one.

6 Performance Evaluation

In this section, we first select representative apps

from the 90 supported apps to evaluate their end-to-

end login time overhead and additional network traffic

in both Wi-Fi and 3G network environment. We also

measure the daily use performance overhead, including

network latency and power consumption.

The mobile part of SplitPass is implemented on a

Samsung Galaxy Nexus smartphone, with one 1.2 GHz

TI OMAP4460 CPU, 1 GB memory, 16 GB internal

storage and one 1 750 mAh battery. The cloud assis-

tant part of SplitPass is deployed in a PC with 2.8

GHz Intel i5-2300 quad-core CPU, 8 GB memory, 500

GB disk, and 100/1000 Mbps NIC. The smartphone is

with Android 4.1 installed as the original system, and

the cloud assistant is with Linux kernel 3.13.7. It is

noted that the mechanisms used in SplitPass do not

rely on the hardware or Android version, and the main

factors to consider are the algorithms used in the SSL

record generation.

6.1 End-to-End Performance Overhead

To measure the latency of the login process of diffe-

rent apps, we select five apps as shown in Table 2,

among which each one represents one combination of

the cipher algorithm and SSL/TLS version (ver.). The

end-to-end performance evaluation is conducted under

both Wi-Fi and 3G network, using the original Android

and SplitPass.

Table 2. Selected Apps for End-to-End Performance

Evaluation

App Name Cipher Algo. TLS Ver. Metadata (Byte)

Bankdroid RC4-SHA v-1.0 502

Ask.fm RC4-MD5 v-1.0 494

Instagram AES128-SHA v-1.0 488

Tumblr AES256-SHA v-1.0 488

Dropbox AES256-SHA v-1.2 488

8○BEAST Attack on client-side SSL. http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-3389, Dec. 2017.
9○The TLS Protocol Version 1.0, Client Hello Section. http://tools.ietf.org/html/rfc2246#section-7.4.1.2, Dec. 2017.
10○CipherSuite list is a list passed from the client to the server in the client hello message, which contains the combinations of

cryptographic algorithms supported by the client in the order of the client’s preference (favorite choice first).

Yu-Tao Liu et al.: SplitPass: Mutually Distrusting Two-Party Password Manager 111

The measurements of SplitPass are done after the

one-time effort initialization (i.e., the cloud CPT, mo-

bile LPT and RRT have already been configured). The

results are shown in Figs.9 and 10. The overall over-

head is less than 10% in both Wi-Fi and 3G network

environment, which is imperceptible.

 0

 3

 6

 9

 12

B
an

kd
ro
id

A
sk
.fm

In
st
ag

ra
m

T
um

bl
r

D
ro
pb

ox

A
ve
ra
ge

E
la

p
se

d
 T

im
e
 (

s)

7.4
8.0

4.0 4.2

1.7
2.5 2.2

2.8

4.95.1

4.0
4.5

Original Android

SplitPass Android

Fig.9. Apps login time evaluation in Wi-Fi network environ-
ment after warming up.

 0

 3

 6

 9

 12

E
la

p
se

d
 T

im
e
 (

s)

9.6
10.2

4.8
5.2

2.4
3.3 3.5

4.3

6.3
6.7

5.3
5.9

B
an

kd
ro
id

A
sk
.fm

In
st
ag

ra
m

T
um

bl
r

D
ro
pb

ox

A
ve
ra
ge

Original Android

SplitPass Android

Fig.10. Apps login time evaluation in 3G network environment
after warming up.

The additional traffic between the mobile device and

the cloud assistant is equal to or less than 520 bytes for

most of the apps, as shown in Table 2. The additional

network traffic caused by the SplitPass mechanism is

mainly due to the cipher metadata. For encryption al-

gorithm, the size of required data structure is 258 bytes

for RC4, 244 bytes for AES, and 16 bytes for each IV.

For hashing algorithm, the size of metadata context is

192 bytes for SHA, and 184 bytes for MD5. We also

send some other metadata, e.g., the IP address of the

server, the password ID, and the corresponding encryp-

tion method, to the cloud assistant.

6.2 Daily Use Performance Overhead

The performance overhead of SplitPass mainly

comes from two sources: the string matching in the SSL

layer and the packet matching for filtering. Thus, we

focus on how these operations on the phone will affect

the network traffic latency and cause additional power

consumption in mobile devices for daily use. In order

to better illustrate the performance overhead caused

by the string searching and matching, we conduct the

experiment to test the latency of normal network traf-

fic (without password authentication), as well as power

consumption overhead.

6.2.1 Network Traffic Latency

The additional latency of normal network traffic

caused by SplitPass mechanism is mainly due to buffer

matching and searching in the SSL library, as well as

the packet filter enabled in the kernel. We conduct a

stress test in the system with and without SplitPass

mechanism enabled. Since this experiment is tested on

normal network traffic other than login, there is only

overhead of matching, but no splitting or redirecting.

We write a test app to send 1 000 HTTPS requests and

receive replies, and calculate the total time. For the

original system, the total latency is about 4.9 seconds,

while using SplitPass, the latency is about 5.2 seconds.

6.2.2 Power Consumption

To test the power consumption impact on the login

process, we consecutively run PayPal login for 30 min-

utes in both the original Android system and SplitPass,

and read the battery every second. As shown in Fig.11,

after 30 minutes, the Android system has 94% battery

left, while SplitPass has 92%.

 90

 92

 94

 96

 98

 100

 0 10 20 30

B
a
tt

e
ry

 C
a
p
a
c
it
y
 (

%
)

Time (min)

Original Login Power
SplitPass Login Power

Fig.11. Battery level changing running stress test on login ope-
ration for 30 minutes.

112 J. Comput. Sci. & Technol., Jan. 2018, Vol.33, No.1

We also evaluate the power consumption of ope-

rations other than login. To trigger string matching

and packet filtering, we simply skim web pages with

HTTPS protocol for 30 minutes and record the battery

level every second. We perform the test on Android as

well as using SplitPass, and the results are shown in

Fig.12. The curves indicate that SplitPass only occurs

small amount of power overhead.

 88

 90

 92

 94

 96

 98

 100

 0 10 20 30

B
a
tt

e
ry

 C
a
p
a
c
it
y
 (

%
)

Time (min)

Original Power

SplitPass Power

Fig.12. Battery level changing surfing HTTPS web pages for 30
minutes, without login operations.

7 Related Work

Password Manager. Password security has been

extensively studied[13-14], and there are many types

of password manager. Local password managers like

1password 11○, Mozilla Firefox, and Apple Keychain,

store passwords on users’ device. Online password man-

agers like LastPass, Mozilla Weave Sync 12○, Tapas[4],

and PIN-Audio[15], store passwords on other device, ei-

ther a remote server or a portable device.

McCarney et al. proposed Tapas[4], a password

manager that applies dual-possession authentication.

Two independent devices are involved, named Manager

(typically a desktop PC) and Wallet (e.g., a phone).

The password is encrypted and saved in Wallet while

the key is held by Manager. Thus, either device lost will

not cause the password leakage. During login process,

Manager asks the ciphertext of password from Wallet,

decrypts it, and sends the password to the server. Tapas

is not designed for mobile devices. Manager and Wal-

let cannot be installed on one device otherwise if the

device is lost the password will be leaked. Thus, if

a user wants to login Facebook on his/her phone (as

Manager), he/she must carry another device as Wallet,

which is not practical. Meanwhile, during the process,

the password is in plaintext in memory, which might be

stolen by malware.

Two-Factor Authentication. TFA (two-factor au-

thentication) technology is an effective way to en-

hance the security of password by using a hard-

ware or software token in addition to the password,

like RSA SecureID 13○, Google Authentication 14○, and

PhoneAuth[16]. Unlike TFA, SplitPass does not require

users to go through two steps, but just use one password

as usual. It also requires no new hardware like a token

or another mobile device. Furthermore, the servers do

not have to change to use SplitPass.

Cloud-Based Security Services. SplitPass continues

the line of research of leveraging a cloud to enhance

mobile platforms[17-18], especially for security[5,19-25].

Paranoid Android[26] mirrors the phone in the cloud

using record and replay mechanisms, so that it can

protect the phone by doing cloud security enforcement.

SmartSiren[21], CloudAV[22], and ThinAV[23] are those

systems to offer cloud-based antivirus service. Macken-

zie and Reiter[20] leveraged capture-resilient cryptogra-

phy to provide cloud-based authentication. TinMan[27]

is a system that also protects critical data like password

on mobile devices. Like SplitPass, TinMan introduces

a remote node to save and access the password, and

only saves placeholders on the device instead of pass-

word plaintext. As long as an app needs to access the

password, the system will migrate the entire app to the

remote node to continue execution, thereby the pass-

word will never appear on the mobile device. TinMan

has a different threat model with SplitPass. It fully

trusts the remote node which stores and accesses the

passwords. In SplitPass, the cloud and the mobile de-

vice mutually distrust each other.

Mobile Data Protection. There are many researches

on protecting critical data on mobile devices[28-29].

Keypad[19] and CleanOS[5] leverage cloud as backend

service to encrypt and store critical data of mobile de-

vices. πBox[30] extends Android platform to prevent

applications from mis-using users’ private information,

including the password, by using sandbox spanning

users’ device and a cloud. SpanDex[31] and Pebbles[32]

11○1password. http://1password.com, Dec. 2017.
12○Mozilla Labs. Weave Sync. http://labs.mozilla.com/projects/weave, Dec. 2017.
13○RSA SecureID: Worlds Leading Two-Factor Authentication. http://www.emc.com/security/rsa-securid.htm, Dec. 2017.
14○Google Authenticator for Two-Step Verification. http://code.google.com/p/google-authenticator/, Dec. 2017.

Yu-Tao Liu et al.: SplitPass: Mutually Distrusting Two-Party Password Manager 113

track the flow of critical data to enforce the protection.

DroidVault[33] leverages hardware features (e.g., Trust-

Zone) to enforce strong control over the sensitive data

in the mobile with minimal TCB. These systems focus

on enhancing security and attack detection on mobile

devices. However, there would still be residue of critical

data left on devices which could be stolen by attackers.

Memory Encryption: Decrypting In-Use. CryptKe-

eper[34] encrypts all memory pages except for a small

working set. Similarly, CleanOS[5] encrypts sensitive

data on the local device and keeps the key on the

trusted cloud. Such data only gets decrypted when it is

accessed, and the plaintext is evicted after a specified

period of non-use by the garbage collector. Although

CleanOS can significantly reduce the exposure time of

sensitive data, it must trust all of the hardware and

software on the device. Keypad[19] is an auditing file

system that provides file-level auditing. All the criti-

cal files are encrypted locally, and the keys are stored

in a trusted cloud. The files are not decrypted unless

they are accessed. These systems cannot defend against

rootkit malware that is able to monitor the memory and

steal the plaintext of password from memory when be-

ing used. In SplitPass, the second half of the password

never exists on the device and thus cannot be stolen by

such malware.

8 Conclusions

Typing passwords is unpleasant for users, especially

when they are using mobile devices with small screens.

However, it is not safe to save them on local storage of

the mobile devices since these devices are prone to get-

ting lost or stolen; thus an adversary may issue all kinds

of attacks to steal data from the storage and memory.

It is also not safe to store them on a cloud since the

cloud itself may be attacked. In this paper, we present

SplitPass, which splits a password into two parts, one

on a cloud assistant and the other on the device. It

ensures that the cloud assistant or the device will never

get the full password. In order to avoid server change,

SplitPass adopts two technologies to make the server

not aware of the splitting of password. SplitPass also

minimizes the modification requirement of apps, and

supports unmodified apps if they use the system’s SSL

library, which is the common case. In the future, we in-

tend to continue the development of SplitPass to make

it support more types of credential data beside the pass-

words.

References

[1] Bonneau J, Herley C, van Oorschot P C, Stajano F. The

quest to replace passwords: A framework for comparative

evaluation of web authentication schemes. In Proc. IEEE

Symp. Security and Privacy (SP), July 2012, pp.553-567.

[2] Silver D, Jana S, Boneh D, Chen E, Jackson C. Password

managers: Attacks and defenses. In Proc. the 23rd USENIX

Conf. Security Symp., August 2014, pp.449-464.

[3] Li Z W, He W, Akhawe D, Song D. The emperor’s new

password manager: Security analysis of web-based pass-

word managers. In Proc. the 23rd USENIX Conf. Security

Symp., August 2014, pp.465-479.

[4] McCarney D, Barrera D, Clark J, Chiasson S, van Oorschot

P C. Tapas: Design, implementation, and usability evalua-

tion of a password manager. In Proc. the 28th Annual Com-

puter Security Applications Conf., December 2012, pp.89-

98.

[5] Tang Y, Ames P, Bhamidipati S, Bijlani A, Geambasu R,

Sarda N. Cleanos: Limiting mobile data exposure with idle

eviction. In Proc. the 10th USENIX Conf. Operating Sys-

tems Design and Implementation, October 2012, pp.77-91.

[6] Müller T, Spreitzenbarth M. FROST. In Applied Cryptog-

raphy and Network Security, Jacobson M, Locasto M, Mo-

hassel P, Safavi-Naini R (eds.), Springer 2013, pp.373-388.

[7] Zhang F Z, Chen J, Chen H B, Zang B Y. Cloudvi-

sor: Retrofitting protection of virtual machines in multi-

tenant cloud with nested virtualization. In Proc. the 23rd

ACM Symp. Operating Systems Principles, October 2011,

pp.203-216.

[8] Das A, Bonneau J, Caesar M, Borisov N, Wang X F. The

tangled web of password reuse. In Network and Distributed

System Security Symp., February 2014, pp.23-26.

[9] Alves T, Felton D. Trustzone: Integrated hardware and

software security. ARM White Paper, 2004, 3(4): 18-24.

[10] Li W H, Ma M Y, Han J C, Xia Y B, Zang B Y, Chu C K,

Li T Y. Building trusted path on untrusted device drivers

for mobile devices. In Proc. the 5th Asia-Pacific Workshop

on Systems, June 2014.

[11] Fahl S, Harbach M, Muders T, Baumgärtner L, Freisleben

B, Smith M. Why Eve and Mallory love Android: An anal-

ysis of Android SSL (in) security. In Proc. the ACM Conf.

Computer and Communications Security, October 2012,

pp.50-61.

[12] Mantin I, Shamir A. A practical attack on broadcast RC4.

In Fast Software Encryption, Matsui M (ed.), Springer,

2002, pp.152-164.

[13] Morris R, Thompson K. Password security: A case history.

Communications of the ACM, 1979, 22(11): 594-597.

[14] Zhang Y Q, Monrose F, Reiter M K. The security of modern

password expiration: An algorithmic framework and empir-

ical analysis. In Proc. the 17th ACM Conf. Computer and

Communications Security, October 2010, pp.176-186.

[15] Saxena N, Voris J. Exploring mobile proxies for better pass-

word authentication. In Information and Communications

Security, Chim T W, Yuen T H (eds.), Springer, 2012,

pp.293-302.

[16] Czeskis A, Dietz M, Kohno T, Wallach D, Balfanz D.

Strengthening user authentication through opportunistic

cryptographic identity assertions. In Proc. the ACM Conf.

Computer and Communications Security, October 2012,

pp.404-414.

114 J. Comput. Sci. & Technol., Jan. 2018, Vol.33, No.1

[17] Satyanarayanan M, Bahl P, Caceres R, Davies N. The case

for VM-based cloudlets in mobile computing. IEEE Perva-

sive Computing, 2009, 8(4): 14-23.

[18] Gordon M S, Jamshidi D A, Mahlke S, Mao Z M, Chen

X. COMET: Code offload by migrating execution transpar-

ently. In Proc. the 10th USENIX Conf. Operating Systems

Design and Implementation, October 2012, pp.93-106.

[19] Geambasu R, John J P, Gribble S D, Kohno T, Levy H M.

Keypad: An auditing file system for theft-prone devices. In

Proc. the 6th Conf. Computer Systems, April 2011.

[20] MacKenzie P, Reiter M K. Networked cryptographic devices

resilient to capture. Int. Journal of Information Security,

2003, 2(1): 1-20.

[21] Cheng J, Wong S H Y, Yang H, Lu S W. SmartSiren:

Virus detection and alert for smartphones. In Proc. the 5th

Int. Conf. Mobile Systems, Applications and Services, June

2007, pp.258-271.

[22] Oberheide J, Cooke E, Jahanian F. CloudAV: N-version

antivirus in the network cloud. In Proc. the 17th Conf. Se-

curity Symposium, August 2008, pp.91-106.

[23] Jarabek C, Barrera D, Aycock J. ThinAV: Truly lightweight

mobile cloud-based anti-malware. In Proc. the 28th Annual

Computer Security Applications Conf., December 2012,

pp.209-218.

[24] Puttaswamy K P N, Kruegel C, Zhao B Y. Silverline: To-

ward data confidentiality in storage-intensive cloud appli-

cations. In Proc. the 2nd ACM Symp. Cloud Computing,

October 2011.

[25] Satyanarayanan M, Lewis G, Morris E, Simanta S, Boleng

J, Ha K. The role of cloudlets in hostile environments. IEEE

Pervasive Computing, 2013, 12(4): 40-49.

[26] Portokalidis G, Homburg P, Anagnostakis K, Bos H. Para-

noid Android: Versatile protection for smartphones. In

Proc. the 26th Annual Computer Security Applications

Conf., December 2010, pp.347-356.

[27] Xia Y B, Liu Y T, Tan C, Ma M Y, Guan H B, Zang B Y,

Chen H B. TinMan: Eliminating confidential mobile data

exposure with security oriented offloading. In Proc. the 10th

European Conf. Computer Systems, April 2015, Article No.

27.

[28] Zhu S W, Lu L, Singh K. CASE: Comprehensive applica-

tion security enforcement on COTS mobile devices. In Proc.

the 14th Annual Int. Conf. Mobile Systems, Applications,

and Services, June 2016, pp.375-386.

[29] Huang Y, Chapman P, Evans D. Privacy-preserving appli-

cations on smartphones. In Proc. the 6th USENIX Work-

shop on Hot Topics in Security, August 2011.

[30] Lee S, Wong E L, Goel D, Dahlin M, Shmatikov V. πBox:

A platform for privacy-preserving apps. In Proc. the 10th

USENIX Conf. Networked Systems Design and Implemen-

tation, April 2013, pp.501-514.

[31] Cox L P, Gilbert P, Lawler G, Pistol V, Razeen A, Wu B,

Cheemalapati S. SpanDex: Secure password tracking for

Android. In Proc. the 23rd USENIX Conf. Security Sym-

posium, August 2014, pp.481-494.

[32] Spahn R, Bell J, Lee M Z, Bhamidipati S, Geambasu R,

Kaiser G. Pebbles: Fine-grained data management ab-

stractions for modern operating systems. In Proc. the 11th

USENIX Conf. Operating Systems Design and Implemen-

tation, October 2014, pp.113-129.

[33] Li X L, Hu H, Bai G D, Jia Y Q, Liang Z K, Saxena P.

DroidVault: A trusted data vault for Android devices. In

Proc. the 19th Int. Conf. Engineering of Complex Com-

puter Systems (ICECCS), August 2014, pp.29-38.

[34] Peterson P A H. Cryptkeeper: Improving security with en-

crypted RAM. In Proc. IEEE Int Conf. Technologies for

Homeland Security (HST), November 2010, pp.120-126.

Yu-Tao Liu received his B.S. de-

gree in computer science from Fudan

University, Shanghai, in 2012. He is

currently a Ph.D. candidate of the

Institute of Parallel and Distributed

Systems, Shanghai Jiao Tong Univer-

sity, Shanghai. He is a member of

CCF and IEEE. His research interests

include virtualization, system security, and mobile security.

Dong Du is currently an undergrad-

uate student of the Institute of Parallel

and Distributed Systems, Shanghai Jiao

Tong University, Shanghai. His research

interests include virtualization and sys-

tem security.text text text text text text

text text text text text text text text

text text text text text text text text

text text text text text text text text text text text text

text text text text text text text text text text

Yu-Bin Xia received his B.S. degree

in computer science from Fudan Uni-

versity, Shanghai, in 2004, and Ph.D.

degree in computer science from Peking

University, Beijing, in 2010. He is

currently an associate professor of the

Institute of Parallel and Distributed

Systems, Shanghai Jiao Tong Univer-

sity, Shanghai. He is a member of CCF, ACM and IEEE.

His research interests include virtualization, computer

architecture and system security.

Hai-Bo Chen received his B.S. and

Ph.D. degrees in computer science from

Fudan University, Shanghai, in 2004

and 2009, respectively. He is currently

a professor of the Institute of Parallel

and Distributed Systems, Shanghai Jiao

Tong University, Shanghai. He is a

distinguished member of CCF, and a

senior member of ACM and IEEE. His research interests

include software evolution, system software, and computer

architecture.

Yu-Tao Liu et al.: SplitPass: Mutually Distrusting Two-Party Password Manager 115

Bin-Yu Zang received his Ph.D.

degree in computer science from Fudan

University, Shanghai, in 1999. He is

currently a professor and the director of

the Institute of Parallel and Distributed

Systems, Shanghai Jiao Tong Univer-

sity, Shanghai. He is a distinguished

member of CCF, and a member of

ACM and IEEE. His research interests include compilers,

computer architecture, and systems software.

Zhenkai Liang received his B.S.

degree from Peking University, Beijing,

in 1999, and Ph.D. degree from Stony

Brook University, New York City, in

2006. He is currently an associate

professor of the School of Computing,

National University of Singapore,

Singapore. He is a member of ACM

and IEEE. His main research interests are in system

and software security, web security, mobile security, and

program analysis.

