
Secure Live Migration of SGX Enclaves on

Untrusted Cloud

Jinyu Gu†‡, Zhichao Hua†‡, Yubin Xia†‡, Haibo Chen†‡, Binyu Zang†, Haibing Guan‡ and Jinming Li∗

†Institute of Parallel and Distributed Systems (IPADS), Shanghai Jiao Tong University
‡Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong University

∗Huawei Technologies, Inc.

Email:{gujinyu,huazhichao,xiayubin,haibochen,byzang,hbguan}@sjtu.edu.cn, lijinming@huawei.com

Abstract—The recent commercial availability of Intel SGX
(Software Guard eXtensions) provides a hardware-enabled build-
ing block for secure execution of software modules in an untrusted
cloud. As an untrusted hypervisor/OS has no access to an
enclave’s running states, a VM (virtual machine) with enclaves
running inside loses the capability of live migration, a key feature
of VMs in the cloud. This paper presents the first study on the
support for live migration of SGX-capable VMs. We identify the
security properties that a secure enclave migration process should
meet and propose a software-based solution. We leverage several
techniques such as two-phase checkpointing and self-destroy to
implement our design on a real SGX machine. Security analysis
confirms the security of our proposed design and performance
evaluation shows that it incurs negligible performance overhead.
Besides, we give suggestions on the future hardware design for
supporting transparent enclave migration.

I. INTRODUCTION

Along with a long line of active research [11], [12], [5],
[4], [29], [25], the recent release of Intel Skylake processors
marks the transition of hardware-secured execution (i.e., Intel
SGX [1], [9], [13]) from research proposals to mainstream re-
ality. By providing a hardware-secured execution environment
called enclave, Intel SGX is a promising technique to directly
provide data confidentiality and tamper-resistant execution to
applications, without trusting the whole software stack includ-
ing the hypervisor, operating system and runtime environment.
The features such as minimized TCB (Trusted Computing
Base) and strong security protection are extremely useful for
outsourced computation in the multi-tenant cloud, where the
infrastructure owner may be curious or even malicious.

There have been several prior studies of using Intel SGX
for security protection. Baumann et al. [3] illustrated how
to leverage SGX to protect an entire LibOS including both
OS and applications; Schuster et al. [16] presented a case of
using SGX for trustworthy data analytics in an untrusted cloud;
Hunt et al. [10] used SGX to implement a distributed sandbox
for hosting untrusted computation on secret data; Arnautov et
al. [2] designed a secure Linux container with SGX.

Unfortunately, with SGX being increasingly deployed to
outsourced computation in an untrusted cloud, a VM with
enclaves running inside loses the capability of live migration,
which is widely used in cloud computing, e.g., for load
balancing, fault tolerance. This is because the SGX hardware
prevents an untrusted hypervisor/OS accessing an enclave’s
running states, which is necessary for traditional live migration.

In this paper, we present the first design and implementa-
tion of securely live migrating 1 a VM with enclaves running
inside. First, we identify all the challenges of enclave migration
introduced by SGX and list all the security properties that
such migration should preserve. Then we design a security-
oriented software-based migration mechanism that allows an
enclave to transfer its running states from the source machine
to the target machine on which it resumes the execution. The
migration process requires the cooperation between enclaves
and untrusted privileged software.

Specifically, we introduce a control thread running in each
enclave to assist migration, which securely dumps all of the
enclave’s states from inside. For the states like data in memory
and CPU context, the control thread will encrypt them and
use checksum for integrity protection before dumping; for the
states that cannot be accessed directly by software, e.g., the
CSSA (Current State Save Area) maintained by processor,
we carefully design a bookkeeping mechanism to infer the
value within the enclave. Besides, being aware of possible data
consistency attacks from an untrusted OS and inspired by the
two-phase commit [24] in distributed computing, we reinforce
our design through a two-phase checkpointing scheme to create
a quiescent point when all the enclave threads reach a quiescent
state. To further defend against fork attack and rollback attack,
we leverage remote attestation (without user involvement) and
self-destroy to guarantee that each enclave instance will not be
rolled back or generate multiple instances after migration.

We have implemented the above design based on KVM by
providing an SGX library for applications and SGX support in
KVM as well as guest OS. We also provide an SDK (Software
Development Kit) for developers so that they can write code
running in an enclave without awareness of our mechanism
for migration, e.g., the control thread. We present a real
implementation and evaluation on the Intel Skylake machine
and share our experience of successful implementation without
relying on Intel SGX SDK for Linux 2. The evaluation results
show that our system’s performance overhead is negligible: to
migrate a VM with 64 enclaves running inside, the total time
of migration grows by 4.7%, and the downtime increases by
only 3 milliseconds. At last, we propose several suggestions
on hardware support for migrating an enclave transparently,

1We uniformly term VM suspension, resuming and live migration as live
migration since the key steps of live migration involve suspending and
resuming a VM.

2We have implemented our own SDK before the release of Intel Linux
SDK.

which may be considered in future extension of SGX.

In summary, this paper makes the following contributions:

• A study on the challenges and possible attacks of
secure live migration of enclaves in a VM.

• A design and implementation with a set of techniques
to address subtle security issues in migration.

• A detailed security analysis and performance evalua-
tion as well as a set of design suggestions for future
SGX extensions.

II. MOTIVATION

A. Background of Intel SGX Technology

Intel SGX (SGX for short) allows an application to in-
stantiate a protected execution environment, referred to as an
enclave, in the application’s address space. Figure 1 gives
the memory layout of an enclave. Accesses to the enclave
memory area from any software not resident in the enclave
are forbidden. It reduces the TCB to only the processor and
the code running in enclaves. In this subsection, we summarize
the SGX functionality relevant to our work.

��������
��

��������
��

��� �����

���� �����

�����

�����

�����

�������� ���

�		�

������

�		��

!!!

�		�� "

#$%&'(

#$%$)*

#$%&'(

!!!

Fig. 1. Memory layout of an enclave with two threads. A thread’s states
include one TCS and multiple SSAs. A TCS is saved in a PT TCS page.
Other data is saved in PT REG pages, which can be accessed in the enclave.

Memory Protection: EPC (Enclave Page Cache) is a se-
cure storage used by the processor to store enclave pages when
they are a part of an executing enclave. The EPC is divided into
chunks of 4 KB pages. The processor tracks the metadata of the
EPC in a secure structure called EPCM (Enclave Page Cache
Map), which is only accessible by hardware. SGX provides a
set of instructions for adding and removing content to and
from the EPC pages. Typically, BIOS can reserve a range
of main memory for EPC at boot time. The contents of the
EPC are protected by Intel MEE (Memory Encryption Engine).
The enclave pages can only be accessed by the corresponding
enclave owner.

Memory Swapping: The EPC is a finite platform asset and
should be managed by privileged software. Intel SGX includes
the EWB instruction for securely evicting pages. EWB encrypts
a page in the EPC and writes it to unprotected memory. In
addition, EWB also creates a cryptographic MAC (Message
Authentication Code) of the page and stores it in unprotected
memory and writes a version number in a VA (Version Array)
slot. VA is a special type of EPC page. A page can be reloaded
back to the EPC with ELDB or ELDU instruction only if the
data, version and MAC match. Note that although a guest

OS can make a checkpoint of an enclave by swapping all
its memory into an image file on disk, the image cannot be
swapped in by another machine, since the evicted pages are
encrypted by Page Encryption Key, which is unique for each
CPU and will never be retrieved outside the CPU.

Important Data Structures: Each enclave has a SECS
(SGX Enclave Control Structures), which contains the meta-
data of an enclave. Each enclave needs to have one or more
TCSs (Thread Control Structure). These two structures are
located in EPC and can only be accessed by hardware. When
entering an enclave, a thread has to specify one TCS which
designates one fixed entry. When an enclave’s execution is
interrupted, the context is saved in the thread’s current SSA
(State Save Area) frame, which is decided by a field of TCS
called CSSA (Current SSA). An enclave can access its own
SSAs.

Control Flow Transfer: A processor can enter an enclave
through EENTER instruction with a TCS, and exit from an en-
clave by issuing EEXIT. If an enclave’s execution is interrupted
due to interrupts or traps, the processor will invoke a special
internal routine called AEX (Asynchronous Enclave Exit)
which saves the context, scrubs the processor state and sets the
faulting instruction address to a value specified by EENTER.
AEX increases the CSSA by 1. Here, the host application of the
enclave has two choices: one is issuing ERESUME to restore
the interrupted context, which will decrease the CSSA by 1;
the other is issuing EENTER to enter the exception handler
defined in the enclave. In the latter case, if another exception
happens, the processor will perform an AEX again and save
the current context in a new SSA, and increase the CSSA again.
Then the processor needs to issue two ERESUME instructions
to resume the initial execution.

Attestation: In SGX, attestation is the mechanism by
which another party can gain confidence that the correct
software is securely running within an enclave. During enclave
construction, the processor computes a digest of the enclave
which represents the whole enclave layout and memory con-
tents. Local attestation allows an enclave to prove to another
enclave that it has a particular digest and is running on the
same processor. This mechanism can be used to establish
authenticated shared keys between local enclaves. Moreover,
SGX enables a particular enclave, called the Quoting Enclave,
which is devoted to remote attestation. Enclave binary should
not be shipped with plaintext sensitive data. After launched
successfully, the enclave can contact its owner to get the
sensitive data. With the help of Quoting Enclave, an enclave
can produce a secure assertion that identifies the hardware
environment and itself. The enclave owner can use attestation
services, e.g., IAS (Intel Attestation Service), to assess the
trustworthiness of the assertion. Based on this mechanism,
the owner can establish a secure communication channel and
provide sensitive data to the enclave.

B. Differences of VM Migration with & without Enclaves

Traditional Live VM Migration: Live VM migration has
been a widely-used technology in the cloud. A VM checkpoint
is usually an image that contains the VM’s entire memory data
as well as its CPU context. The image is a snapshot of the
VM’s current state and can be used to resume the execution

of the VM in the future. Live VM migration can be done by
simply making a checkpoint of a VM on the current physical
machine, transferring the checkpoint to a target machine, and
resuming the VM on that machine. A typical optimization of
live VM migration is to overlap the checkpointing phase and
the transferring phase so that a VM can keep running while
its checkpoint data is being transferred through the network.

Difference-1: Enclave states are sealed in hardware.
Traditionally, the hypervisor can access all the running states
of a guest VM. On SGX platform, the hardware has many new
states for each running enclave. All these states are necessary
for resuming the enclave’s execution on the target machine,
including the enclave memory, TCS structure, etc., as presented
in Section II-A. However, neither the hypervisor nor the guest
OS can access an enclave’s memory (EPC) directly. Even if the
guest OS can swap all of an enclave’s data from EPC to normal
memory, these data will be encrypted by hardware and the
encryption key will never leave the processor, which makes it
impossible for the target machine to restore the execution of the
enclave. Moreover, some of the enclave states, e.g., the CSSA,
cannot be accessed by any software (even the enclave itself),
which brings a significant challenge to enclave migration.

Difference-2: Neither the hypervisor nor the guest OS is
trusted. Traditionally, the hypervisor is trusted and can access
any state of a guest VM. On SGX platform, the hardware
provides an execution environment for each enclave, which is
isolated from the potentially malicious hypervisor or guest OS.
However, the migration process requires that the enclave states
are dumped out of the enclave where there is no hardware
protection. A malicious hypervisor may steal or tamper with
the states during the process. In Section IV-A, we also show
that a malicious guest OS may violate the consistency of states
of a multi-threaded enclave by controlling the scheduling. It is
necessary to protect the enclave states during migration without
trusting the hypervisor or guest OS.

Difference-3: Cloning or rolling back an enclave could
be malicious. Traditionally, a cloud operator is allowed to
clone a guest VM to get multiple instances or rollback a guest
VM to some previous checkpoint. For example, a VM running
a web server can be automatically replicated once its workload
increases significantly, which is known as “resilient comput-
ing”. Nevertheless, cloning or rolling back an enclave might
be considered as a malicious behavior. On SGX platform,
once an enclave starts to run, all of its states are protected
by hardware. Thus the OS has no way to clone or rollback the
enclave. However, if enclave migration is enabled, a malicious
cloud operator might issue fork attacks or rollback attacks, as
presented in Section V-A. How to defend against these attacks
while enabling enclave migration is also a challenge.

C. Security Properties

In order to enable secure migration of a guest VM with
enclaves, the system needs to achieve the following security
properties:

• P-1: State confidentiality. The states of a migrating
enclave will not be leaked during migration.

• P-2: State integrity. The states of a migrating enclave
will not be tampered with during migration.

• P-3: State consistency. An enclave will generate
a consistent checkpoint (consisting of the enclave’s
memory data and execution context), which will be
used for enclave restoration.

• P-4: State continuity. The states of an enclave will
not be rolled back to some previous states due to
migration.

• P-5: Single instance. It should be guaranteed that only
one enclave instance will be restored after migration.

• P-6: Minimal TCB. The migration process should not
trust any software other than the code running in the
enclave.

In addition to these security properties, the system should
also avoid any user (owners of guest VMs or owners of
enclaves) involvement during migration.

D. Threat Model

Analogous to prior work [3], [26], [2], we assume a
powerful and active adversary who has superuser access to
the system and the physical hardware. All other softwares and
off-the-chip hardwares, including the hypervisor, the guest OS,
DRAM, peripherals, are not trusted. We only trust the enclaves
and the Intel SGX mechanism.

We take no steps to prevent the enclaves from intentionally
leaking their own secrets (or via bugs) or defend against
side channel attacks (e.g., using cache timing attack to steal
secret keys). Some orthogonal solutions [18], [17] for software
reliability can be adopted to mitigate this. DoS attacks, e.g.,
the hypervisor refusing to migrate a VM or the guest OS only
resuming 3 out of 4 enclaves on the target VM, are also not
considered. Such attacks are not introduced by migration and
we focus on the new threats introduced by migration.

We define a secure migration process as follows: For a
single VM, the process of its migration should not lead to any
running state that will not exist if without the migration. In
another word, the migration should not degrade the security
level of the original system.

III. SYSTEM OVERVIEW

Briefly, the enclave migration process, as shown in Fig-
ure 2, includes the following three operations: first, the source
machine dumps one enclave’s running states out. Second, the
dumped states are transferred to the target machine through
the network. Third, the target machine creates a new enclave
and restores the running states to resume execution.

Since SGX hardware ensures that the memory content and
other states of an enclave can only be accessed by the enclave
itself, the states dumping and restoring in the first and third
operation mentioned above can only be done within enclaves.
Thus we introduce control thread, a new thread that runs
within each enclave, to assist migration. The control threads
on the source and the target machine will establish a secure
channel for communication during migration. Control threads
are totally transparent to enclave developers as long as the
developers use our SDK, which will insert a control thread to
each enclave automatically.

Application

Enclave

SGX Library

TCS Memory

Checkpoint Application

Enclave

TCSMemory

SGX Library

Secure Channel

CSSA Tracking

Enter Quiescent Point

CSSA Tracking

Exit Quiescent Point

Guest OS

Hypervisor

SGX Driver

SGX Support

Guest OS

Hypervisor

SGX Driver

SGX Support

Source Machine Target Machine

Control Thread

Worker Thread

!"#$%&&'(&%&)*+,

Fig. 2. Overview of migration process of a VM with an enclave.

On the source machine, the control thread is responsible for
generating a checkpoint that contains all the enclave’s memory
and execution context, including the software-unreadable states
maintained by hardware: the CSSA field in TCS. Specifically,
we have designed a software mechanism running in the enclave
that can track CSSA by monitoring all the entry and exit events
of the enclave, without any dependency on the untrusted guest
OS or hypervisor. The control thread also needs to protect
the confidentiality (P-1) and integrity (P-2) of the generated
checkpoint during the transfer. The migration key is shared by
the control threads on the source and target enclave, which
is exchanged through a secure channel. We also illustrate
that a malicious guest OS may violate the consistency of a
checkpoint by suspending and resuming enclave threads. Thus
we propose a two-phase checkpointing mechanism to ensure
the consistency of the checkpoint (P-3).

On the target machine, the restore process contains the
following four steps.

• Step-1: the target machine creates and initializes a
virgin enclave using the same image of the migrated
enclave.

• Step-2: the source control thread will remotely at-
testate the newly created enclave. If the attestation
succeeds, it will establish a secure channel with the
target control thread to deliver the key encrypting the
checkpoint.

• Step-3: the target control thread will restore all the
memory using the checkpoint, and utilize the SGX
library (out-of-enclave) to restore CSSA. In the mean-
time, the target control thread will also track the CSSA
using the same method mentioned above.

• Step-4: before resuming execution, the target control
thread will check whether the tracked CSSA is the
same as the one in the checkpoint.

Step-1 is the only way to restore part of the hardware
maintained enclave states such as SECS (SGX Enclave Control
Structure). Note these states do not change during enclave

execution. At this point, the code and data of the virgin enclave
are encrypted except for the part of migration.

In Step-2, the remote attestation is done by source con-
trol thread without involving the enclave owner. This design
significantly eases the process of migration. Otherwise, the
owner will have to do the attestation for each migration, which
will make the migration not practical. The attestation in step-2
will be done for only once. After step-2, the source control
thread will destroy its own enclave (self-destroy) to ensure
that only one enclave instance is running (P-4 & P-5). The
entire migration process is done without trusting any software
components other than the code running inside the enclave
(P-6).

IV. GENERATING ENCLAVE CHECKPOINTS

At the beginning of a migration, the control thread will
traverse the entire used memory within the boundary of the
enclave and dump the data. Once dumped from EPC to normal
memory, the state data is no longer protected by the hardware.
To guarantee the privacy and integrity of the data in check-
point, before dumping it to the normal memory, the source
control thread first calculates a hash value of the checkpoint
and then uses a randomly generated migration key (Kmigrate)
to encrypt the data together with the hash value. However, a
malicious guest OS may still violate the consistency of the
checkpoint when it is being generated.

A. Data Consistency Attack by Guest OS

Since the control thread runs concurrently with other
worker threads of the same enclave, it has to ask all the other
threads to suspend running to reach a quiescent point before
dumping. Otherwise, it may get a checkpoint with inconsistent
data. As a user-level thread, the control thread cannot directly
suspend all worker threads, so it has to ask the OS for help.
However, a malicious OS may deceive the control thread that
the enclave has reached a quiescent point but is actually not,
in order to violate the consistency of checkpoint. We call such
attacks data consistency attack, as demonstrated in Figure 3.

Happen before

Work Thread Control Thread

!!"#$%&&&'"($&

!"#$%&'"()*+

**,-./()0

**1*2*1*3*45550

**6*2*6*7*45550

**8$,-./()0

9

!!")*+*,-".,"/0"1."21.+

:8;<=;';()*+

**%!-<=-!>'"=!>"'#:()0

**:8;<(1)0*!!"#$%&&&

**:8;<(6)0*!!"($%&&&

9

Fig. 3. An example of data consistency attack.

As Figure 3 shows, when a migration begins, a worker
thread in an enclave is transferring money from account A to
account B. The control thread calls stop other thread() to ask
the OS to stop all other threads. However, the malicious OS
returns OK but actually does not stop the worker thread. Thus,
the control thread may get an old version of account A (5000)
and a new version of account B (5000), which violates the
invariant that the sum of accounts should be 5000.

B. Two-phase Checkpointing

To ensure that one enclave has reached a quiescent point
before memory dumping, we propose a mechanism named
two-phase checkpointing. In the first phase, the control thread
will set a global flag in the enclave to indicate the start of the
suspending process. Each worker thread will enter a predefined
spin region as long as it finds that the global flag is set.
When running in the spin region, a thread will not change any
memory and will keep in the region until it finds that the global
flag is unset. The control thread will wait for all the worker
threads to enter the spin region (or not running) before starting
the second phase. In the second phase, the control thread will
scan the enclave memory and generate a checkpoint. Thus, the
control thread can ensure the consistency of the checkpoint
without the help of the untrusted guest OS.

+,-./01/.234567

89:;<=9 ><?@ABCA@D

EF-/.GH +,2I-

EEJKL

MHN O/,P./01/.2

QH6HN O/,P./01/.2

EEJKL

R, 4567

+,-./01/.2S

T?@U V9W<=X Y
V@Z9 [\9?Z]<^U;

_

`

abcdebf gheijklbemie gheijk

nop qrstou urvwx yzyx{|wr} n~p ��y}| �o}�uw}v

_

`

O/,P./01/.2

I6 MHNS

M.GH +,-./01/.2

`

O/,P./01/.2

I6 MHNS

89:;<=9 ><?@ABCA@D

EGHFN �.F�/H�

EEJKL

+,-./01/.234567

_

+,-./01/.23M�IF +,-./01/.23M�IF

+,-./01/.234567 +,-./01/.234567

nxp �r}|sru |�syo� �srxy��

M.GH +,-./01/.2

Fig. 4. The control flow of a worker thread and a control thread.

Implementation: More specifically, we introduce a global
flag for each enclave and a local flag for each worker thread.
Initially, the global flag is unset and the local flags are free.
As Figure 4 shows, when entering the enclave, a worker thread
will first save its local flag and set this flag to busy. Then it
will check the global flag. If the global flag is set, it will set
its local flag to spin which means it is ready for migration and
spin till the end of phase two. Otherwise, it will set its local
flag to busy and move forward. Before exiting, it will restore
its local flag to the previous value.

Some worker threads may execute in the enclave for a long
time. It is very likely that such a thread has already set its
local flag to busy when the control thread sets the global flag.
If so, the control thread needs to wait for a long time, which
will block the process of migration. Such a thread will be
interrupted periodically, so we can leverage AEX to make it
enter the exception handler in the enclave and then check the
global flag. If the global flag is set, the thread will also set its
local flag to spin and spin in the exception handler until the
end of migration.

The control thread waits until a quiescent point when all the
worker threads are in either free or spin state. Next, it dumps
all the enclave states. The memory layout of an enclave is
decided during development. Our SDK puts the global flag at
the beginning of enclave, so the address of the global flag can

������� ����

��� ����

���� � �

��� ����

���� � �

��� �� ¡¢ £¢¤

���� � �

��� �� ¡¢ £¢¤

���� � �

��� �� ¡¢ £¢¤

���� � ¥

¦¦§�¦¨

¦¦©ª�

�¦©

¦¨¦�«¬¦

¦¦§�¦¨

¦¦©ª�

�¦©

®¯°±² ³®´µ

¦¨¦�«¬¦

Fig. 5. TCS states change. EENTER and EEXIT are one pair of operations,
while AEX and ERESUME is another pair. The former does not change the
value of CSSA, while the latter does.

help the control thread to determine the address range of the
enclave. If a page is evicted (swapped out), it will be swapped
back into EPC when the control thread accesses it. If having
executable, writable and non-readable permission, one EPC
page cannot be migrated because the control thread cannot
read its content. This is a limitation of our solution in SGX v1.
However, such pages are rare in common applications and this
problem can be fixed in SGX v2 which supports dynamically
changing page permissions.

Note that the control thread only needs to ensure a fixed
number of enclave threads (the number of TCS) are in the
predefined safe state (free or spin). This is because the number
of TCS is the maximum number of enclave threads. The code
to implement two-phase checkpointing is added by our SDK,
which will not burden enclave developers.

C. In-enclave CSSA Tracking

The CSSA (Current State Save Area) field of TCS is a
counter that indicates the nesting level of enclave exception
handling, as mentioned in Section II-A. Figure 5 shows an
example of the state change of TCS. If an exception happens
(e.g., page fault) when an enclave is running, the hardware
will save the context of execution to the SSA-0 (SSA is a
memory region within an enclave and indexed by CSSA, as
shown in Figure 1) and increase CSSA to 1 before exiting
the enclave. Later, if the SGX library decides to resume the
execution from the interrupted point (by using ERESUME),
the hardware will restore the context from the previous SSA,
and decrease CSSA to 0. Or the SGX library may decide to
enter the enclave’s exception handler (by using EENTER), then
no restoring will occur. In this case, if an exception happens
again when the enclave is executing, its context will be saved
in the SSA-1, and CSSA will be 2.

As the above example shows, the value of CSSA is critical
to the control flow of an enclave and should be a part of the
checkpoint. The challenge is that there is no software way
to read or write CSSA directly. As a result, although all the
SSA regions (they are in the enclave) will be transferred to the
target enclave, there is no way to know or set the correct value
of CSSA. We observe that there are two possible solutions to
infer CSSA by software.

Solution-1: Infer CSSA from AEX and ERESUME
by the (untrusted) outside-enclave SGX library. When an
AEX happens, the control flow will be transferred to the event
handler of OS, and finally return to an address named “AEP”
(Asynchronous Exit Pointer). AEP is EENTER’s parameter
which is an address located in SGX library. The location
contains the ERESUME instruction which can transfer control
back to the enclave. It is observed that the value of CSSA
is only changed when an AEX happens or an ERESUME
instruction is executed. An intuitive choice is leveraging the
SGX library to track the value of each CSSA. However, the
SGX library could be compromised because it is outside the
enclave. An attacker may offer a faked CSSA value to hijack
the control flow when resuming the enclave’s execution.

Solution-2: Infer AEX and ERESUME from EENTER
and EEXIT by the enclave itself. In order not to rely on
untrusted components (P-6), we provide a novel method to
indirectly trace the CSSA in the enclave. Although the CSSA
field cannot be read, its current value will be stored in register
rax as the return value of EENTER instruction. Nevertheless,
the value of CSSA may be changed due to AEX during
enclave execution. We observe that there are two possible cases
between EENTER and EEXIT. In one case, when a thread is
executing in the enclave, the execution times of ERESUME and
AEX must be equal. The value returned by EENTER is equal to
the accurate value of CSSA. In the other case, when a thread is
outside the enclave, the difference between the execution times
of AEX and ERESUME must be one. So the return value of
EENTER is smaller than the real value of CSSA by one.

Implementation: Specifically, when a worker thread is
prepared for migration, its local flag can only be free or
spin. The local flag is free if and only if the thread has
executed EENTER and EEXIT for the same times. Therefore,
the number of times of AEX and ERESUME must be equal
too, which means the thread’s CSSA must be 0 in this case.

At the entry of enclave, the stub code will record
CSSAEENTER (the return value of EENTER). If the local flag
is spin after migration, the CSSA’s value must be greater than
CSSAEENTER than one. Because the corresponding thread
must be outside the enclave when the VM is migrated from
the source to the target machine.

On the target machine, CSSA tracking is also leveraged
to verify the process of restoring. Note that although the
control thread knows the accurate value of CSSA, it cannot
directly restore that value on the target machine (only accessed
by hardware). Only the untrusted SGX library together with
guest OS can restore the value of CSSA through executing
the EENTER and triggering the AEX repeatedly. While the
control thread has to rely on their functionalities, it will check
the restoring process to ensure the CSSA is correctly restored.

V. SECURE ENCLAVE MIGRATION

Thanks to the hardware-enforced isolation as well as re-
mote attestation provided by SGX, the owner of an enclave can
ensure that there is only one running instance of the enclave,
because the OS can neither clone (requires EPC access) nor
re-create (requires remote attestation) the enclave without its
owner’s awareness. Some applications may depend on the

uniqueness feature of SGX as one important security assump-
tion. However, once migration is enabled, a malicious cloud
operator may try to migrate one enclave to multiple target
machines (aka., fork attack) or let the target machine resume
from a stale version of the checkpoint (aka., rollback attack).
In this section, we present how our migration mechanism
leverages remote attestation to build a secure channel, and
further uses self-destroy to ensure the uniqueness of the enclave
instance at all time.

A. Fork Attack & Rollback Attack

Figure 6 shows an example of fork attack. There is a mail
server running in an enclave on some untrusted cloud. A client
connects to the server and does three operations. 1©: create
an email with a list of friends as recipients. 2©: delete one
of the friends, Eve, from the recipients. 3©: send the mail.
The client will not do the next operation unless receiving the
acknowledgment of the previous operation from the server. The
untrusted cloud controls the forwarding of requests.

Recipients:

 {Alice, Bob, Eve, …}

Content: {xxx}

Status: draft

Recipients:

 {Alice, Bob, …}

Content: {xxx}

Status: draft

Recipients:

 {Alice, Bob, Eve, …}

Content: {xxx}

Status: draft

Recipients:

 {Alice, Bob, Eve, …}

Content: {xxx}

Status: sent

Op-!. Create a mail Op-". Delete Eve Op-#. Send the mail

Time

S
o

u
rc

e
 E

n
c

la
v
e

T
a

rg
e

t
E

n
c

la
v
e

Migrate

Resume

Resume

Fig. 6. An example of fork attack.

If there is only one instance of the mail server enclave
running and no migration enabled, the client can ensure that
the mail will not be sent to Eve. However, if a malicious
cloud operator migrates the enclave to a target machine after
operation 1©, then resumes the execution of the enclave on
the source machine to handle operation 2©, the client will
receive the acknowledgment of operation 2© and start to do
operation 3©. At this moment, the operator resumes the enclave
on the target machine to handle operation 3©. In such case,
operation 2© is actually bypassed on the target machine, and
the email will be sent to Eve. The key step of the attack is
that the operator resumes the enclave on the source machine
after migration, which causes two enclave instances with the
same intermediate states running at the same time.

Rollback attack can also be an undesired side effect of
enclave migration. For example, a mail server running in an
enclave requires a client to enter a password for authentication.
To mitigate brute-force attacks, the server sets a policy that
a client can make at most three failed attempts, otherwise
some predefined alarm will be triggered. However, a malicious
hypervisor can utilize enclave migration to get thousands of
enclave instances to guess the password. Also, a malicious
operator can utilize enclave migration to generate a checkpoint
at first, and commit a brute-force attack by restoring the
enclave to the checkpoint after three failed attempts. So, it
should be banned that a migration restores more than one

enclaves. And the operator cannot resume an enclave from a
checkpoint at any time without the enclave owner’s awareness.

B. Enforcing Single Instance of Enclave

In order to ensure the uniqueness and state-continuity of
an enclave during migration, it is necessary to ensure that:

• The enclave instance on the source machine will not
resume its execution after migration.

• The enclave instance on the source machine will only
generate one checkpoint, which can be restored by one
target enclave.

We develop a mechanism named self-destroy to ensure the
above properties without trusting any privileged software com-
ponents.

Self-destroy: The source control thread will refuse to
resume the source enclave after it transfers the Kmigrate

(migration key) to the target control thread through the secure
channel. In order to prevent the case that the migration process
is canceled (e.g., due to network problem) after the source
enclave’s self-destroy, the Kmigrate will only be sent after
all other data transferring has been done. If a migration is
canceled, the source enclave will delete the Kmigrate imme-
diately so the checkpoint will be useless. By the self-destroy
mechanism, once the source enclave generates one checkpoint
for one target enclave, it will not resume any more. This is
done simply by keeping the global flag unchanged so that all
the work threads will spin forever.

Secure Channel: So as to protect the Kmigrate and ensure
only one target control thread can get it, a secure channel
between the source and the target control thread is essential.
The source and the target control threads leverage Diffie-
Hellman key exchange protocol to build a secure channel. It is
depicted in Figure 7 that the crux is the mutual authentication
of both the source and the target enclaves.

Application

Enclave

Attestation Service

!"#$#%&'()"*+
Enclave

Owner

Untrusted Cloud

Application

Enclave

During migration

During booting

Source Machine Target Machine

Fig. 7. Attestation process. During booting, the enclave owner attests the
enclave; during migration, the source enclave attests the target enclave.

The source authenticates the target: The source control
thread uses remote attestation to ensure that the received
message is from the target enclave. Here the source enclave
acts like the enclave owner in the remote attestation at launch
time.

The target authenticates the source: We put a pair of keys
into the enclave image. The public key is in plaintext while
the private key is in ciphertext. After the migration, the target
enclave can get the plaintext private key from the source
enclave. When an enclave is first created, it can rely on remote
attestation to get the plaintext private key from the enclave
owner, as mentioned in Section II-A. Since the source enclave
has been attested before, it has a plaintext private key. All the
messages from the source enclave to the target enclave are
encrypted by this private key. Thus, the target control thread
can verify the received message with the public key.

Note that the communication channel between the source
enclave and the attestation service is also protected by another
two pair of public/private keys. One belongs to the source
enclave. The other belongs to the attestation service. The pub-
lic key of the source enclave was registered in the attestation
service before. The source enclave has its own plaintext private
key because it has been attested before while the target enclave
does not. So the target enclave cannot use remote attestation
to authenticate the source enclave.

Besides, the source control thread ensures that it will
use Diffie-Hellman key exchange protocol to build only one
secure channel even if receiving many exchange requests from
different targets. Therefore, our design guarantees that only one
authenticated target enclave will get the Kmigrate.

C. Supporting Checkpoint/Resume

Technically, there is no difference between rollback attacks
and legal checkpoint/resume operations. Some prior work [21]
simply disables the checkpoint/resume mechanism for secu-
rity, which, however, renders some normal operations usually
offered by a cloud platform (like snapshot) unavailable.

We want to support not only secure live migration but also
legal checkpoint/resume operations. Similar to the first step
of migration, the control thread will generate a checkpoint.
The only difference is that for encrypting the checkpoint, the
control thread will retrieve an encryption key (Kencrypt) from
the enclave owner instead of generating a random one. When
resuming, the control thread must use remote attestation to
retrieve the corresponding Kencrypt from the enclave owner.
Thus, all the checkpoint/resume operations are logged. By
auditing the log, an owner can check suspicious rollbacks,
constrain the operations on enclaves and ask the cloud op-
erator to prove the necessity of such operations. In short, the
checkpoint/resume operations need the owners’ involvement
while the migration does not.

VI. IMPLEMENTATION

We have implemented a working system on a real Intel
SGX machine for Linux and KVM. We added about 50 LoC
in Qemu, 1584 LoC in KVM and 5798 LoC (except the source
code of libc inside enclave) in the guest VM which consists
of the SGX driver and SDK. When we built our system, Intel
has not provided any SGX support for Linux environment.
To our knowledge, we are the first to report the design and
implementation of migrating a VM with enclaves on a real
machine. Our SDK is also compatible with Intel SGX driver
for Linux. Integrating our solution of Enclave Migration into
Intel SGX SDK is our future work.

A. SGX Support in Hypervisor

EPC Management: EPC (Enclave Page Cache) is a finite
platform asset. The hypervisor is in charge of managing EPC
and letting VMs share EPC without affecting each other. At
boot time, hypervisor maps all the EPC into its virtual address
space. For each page located in this region, hypervisor needs
to maintain the metadata, including state (used or free), owner
(which VM it belongs to), etc. When creating a guest VM,
the hypervisor will first reserve a range of guest physical
address which will be used as the guest’s EPC region later.
New hypercalls are provided for the guest VM to learn about
the location and size of its EPC. However, the hypervisor
only maps part of this region to real EPC and leaves the
remaining part unmapped. On the one hand, the guest VM
can use the EPC without triggering EPT (Extended Page Table)
violations before it uses up the mapped part, which benefits
the performance. On the other hand, the hypervisor can use
the on-demand paging strategy to save EPC resources. If the
hypervisor has already used up all the physical EPC and
receives a new request for EPC allocation, it will revoke some
EPC resource from a chosen VM by evicting EPC pages and
clearing the mappings in EPT. The hypervisor overcommits
the EPC resources through swapping which is transparent to
the VMs.

VMExit Inside an Enclave: Once a VMExit event occurs
when the CPU is running an enclave, the hardware will
set a bit, named “Enclave Interruption” bit, in the Guest
Interruptibility State field of the VMCS (Virtual Machine
Control Structure) as well as in the EXIT REASON field before
delivering the VMExit to the hypervisor. Thus the hypervisor
can invoke the correct handlers. For EPT violation triggered
during enclave execution, if the fault address is located in
the virtual EPC of guest VM, the hypervisor will allocate a
physical EPC page and fill the corresponding EPT entry with
the address of this page; if not, the original EPT violation
handler will be invoked. For other events such as illegal
instruction and timer interrupt, currently we clear the bit in
EXIT REASON field and then reuse the original handlers in
the hypervisor and guest OS.

B. SGX Support in Guest OS

Virtual EPC Management: Our SGX driver in the guest
OS first asks the hypervisor for the address of EPC and then
maps the whole EPC into the kernel virtual address space. The
management of EPC is similar to that of normal memory. The
difference is in the process of evicting a page. If the SGX driver
needs to allocate a new EPC page when it has already used
up all its EPC, it will first choose some EPC pages based on a
simplified LRU (Least Recently Used) algorithm and then use
SGX instructions to swap them into normal memory. Evicting
an EPC page generates a cryptographic MAC, an encrypted
copy of the page data and an 8-byte version number. The driver
needs to record such information for loading back this evicted
page in the future.

Enclave Creation and Destruction: Our SGX driver
provides some new interfaces (through ioctl) for applications.
The SGX driver first reserves a range of virtual address for
the enclave in the application’s address space. Next, the driver
uses the ECREATE, EADD, EEXTEND and EINIT instructions

in turn to create a runnable enclave. Last, the driver returns
an enclave ID to the application if succeeding in creating the
enclave, and maintains the relationship among the application,
the ID and the enclave. An application can invoke one system
call with an enclave ID to destroy its own enclave. The driver
uses the EREMOVE instruction to free the enclave’s resources.

C. SDK and SGX Library for Applications

We provide an SDK for developing applications with
enclaves. Although our enclave migration design needs appli-
cations’ awareness, it will not bother developers because the
migration task is in the charge of our SDK.

Interactions between Enclaves and Applications: Our
SDK hides the details of interaction between the enclaves
and their host applications from the developers. For data
communication, we pass arguments through shared memory
outside the enclave. For control transfer, we insert trampolines
into an enclave, which enables the enclave to call the outside
functions without leaking any security information; there are
other trampolines in SGX library (outside the enclave) for
transferring the control flow into the enclave. Besides, if the
developer defines an exception handler in the enclave, the
SGX library will use EENTER to invoke that handler after
the enclave is interrupted, and then use ERESUME to resume
the execution.

Stubs and Functions in Enclaves: A developer needs to
specify the legal entries of an enclave. Our SDK is responsible
for adding a stub for the legal entry of the enclave. The
entry stub saves all the registers (including the stack pointer)
and changes the stack (using the stack inside the enclave).
Accordingly, there is also a stub, which restores all the registers
and the original stack, at the exit. Moreover, these stubs ease
the support of two-phase checkpointing. They are in charge
of checking the global flag, setting the local flags, as well as
recording the return value of EENTER. The SDK also adds
the code of control thread, and another TCS (Thread Control
Structure) for invoking the thread, without the developers’
involvement. Besides, our SDK supports most of libc functions
in enclave through statically linking a simplified libc within
enclave. For some functions, such as malloc and free, the
SDK implements them in enclave directly. For other functions
requiring invoking system calls, such as read and write, they
will eventually be forwarded to the outside SGX library.

D. Putting All Together: Migration of a VM with Enclaves

Qemu Guest OSSGX Driver

Application
Enclave

Host OS KVM ModuleSGX Support

!

"#

$

%

&'

(

Fig. 8. The overview of suspending process on the source machine.

This subsection describes the whole process of migrating
a VM with enclaves. An overview of suspending process is
depicted in Figure 8, which consists of the following steps:

1© When the QEMU monitor receives a migration com-
mand, it will tell the hypervisor to migrate the VM through a
new system call.

2© The hypervisor locates the VM of the QEMU process
and informs the guest OS that it should be prepared for mi-
gration. Here we implement an upcall mechanism by injecting
a special interrupt.

3© After the guest OS receives the migration notification, it
will refuse to create any new enclaves till the end of migration
and ask applications to make enclaves prepared for migration.
Specifically, it sends a migration signal (SIGUSR1) to each
enclave process. Our SGX library has already registered the
handler for this signal before creating enclaves.

4© After receiving the signal of migration, the SGX library
will invoke the control threads to start the two-phase check-
pointing.

5© After a control thread returns, the SGX library will
tell the guest OS that one enclave is ready. At this point,
the encrypted checkpoint of this enclave is stored outside the
enclave.

6© When all enclaves are ready for migration, the guest OS
will tell the hypervisor that it is ready for migration through
a new hypercall.

7© The hypervisor returns the control flow back to the
QEMU process. Then the QEMU can continue the migration
process without caring about enclaves.

On the target machine, the resuming process is similar with
the previous one (without enclaves). The differences are as
follow: First, the guest OS rebuilds all the enclaves according
to the records of enclave creation and destruction. In the
meantime, the hypervisor restores the EPC mapping for the
guest OS. Next, the guest OS tells the SGX library to invoke
control threads for each application. Last, each control thread
restores each enclave.

An Optimization of Remote Attestation: As shown in
Figure 7, one remote attestation needs at least two network
round trips: one between the enclave application and the owner,
the other between the owner and the attestation service. The
source control thread only sends the Kmigrate to the target
after building the secure channel with remote attestation. The
latency of remote attestation could harm the performance of
migration if not hidden. Therefore, we propose an optimized
solution that hides the latency while guaranteeing the same
security.

The application developer needs to provide another enclave
called the agent enclave. A developer can use one agent
enclave to serve all his/her enclaves. During a migration (or
even before a migration), the source control thread first re-
motely attests the agent enclave on the target machine and then
transfers the Kmigrate to it in advance. Hence, when the VM
is resumed on the target machine, all its enclaves can get their
migration keys from agent enclaves through local attestation.
Agent enclaves can be destroyed after the VM resuming. The

implementation of agent enclave is straightforward and our
SDK provides a framework to easily develop it.

VII. SECURITY ANALYSIS & DISCUSSION

A. Security Analysis

Our software-based enclave migration solution meets all
the security properties proposed in Section II-C. The privacy
(P-1) and integrity (P-2) of the checkpoint are protected by
encryption and checksum. The consistency (P-3) is ensured by
our two-phase checkpointing mechanism. Each checkpoint can
only be used for migration once (P-4), after which the source
enclave will destroy itself to keep a single running instance (P-
5). The whole design does not depend on the trustworthiness
of any software other than the enclave itself (P-6).

Consistency attack among multiple enclaves: There are
cases that a VM may contain multiple interrelated enclaves.
For instance, an application may distribute states to multiple
enclaves. In such cases, a malicious guest OS may try to violate
the consistency of the VM’s checkpoint that contains all of the
enclaves’ checkpoint:

CAll−Enc = {CEnc−1, CEnc−2, ..., CEnc−n}, where
CAll−Enc means checkpoint of the VM and CEnc−n means
checkpoint of enclave-n. Our checkpoint generating mech-
anism can inherently enforce the consistency of CAll−Enc.
Specifically, as long as the state continuity (P-4) and single
instance (P-5) are ensured, the system will not generate a
CAll−Enc whose states will not exist in the original system
(the one without migration).

DoS attack by the malicious hypervisor or guest OS: In
our design, a successful migration still relies on several critical
functionalities of the hypervisor and guest OS, including
the I/O operations, scheduling, enclave construction, etc. It
is possible that the system software refuses to finish such
functionalities. Such a DoS attack can be detected by the
tenants and is not introduced by migration.

Side-channel attack: The migration process may leak two
new kinds of information of an enclave to a potential attacker:
The first is the size of the checkpoint image. For example, the
attacker may get the size of stack and heap of an enclave to
infer its running states or even certain data. However, since
the checkpoint is encrypted, the attacker has no way to get
its internal structure. A simple solution is dumping out the
whole enclave memory instead of only the used part. Or we can
simply add some random size of data to the checkpoint (e.g.,
padding data) so that the size of checkpoint does not accurately
reflect the size of memory used by the enclave. The second
is the length of time of checkpoint generation. However, such
length only relates to the time of AEX occurrence, which does
not reflect any running information of the enclave.

Other attacks: Our migration mechanism does not leak
any information in plaintext during the process, thus it can
defend against physical attacks as well. Resending all the
network packets to a target enclave cannot launch a replay
attack successfully, because the control threads will establish
a new secure channel (with random session key) for each
migration so that the stale checkpoint will be considered
invalid.

B. Suggestions on Hardware Design for Migration

Currently, due to hardware limitations (both SGX v1 and
v2), an enclave cannot be migrated transparently and securely
by system software. In this section, we give some suggestions
on hardware design to assist transparent enclave migration.

Since different SGX equipped CPUs use different keys to
encrypt the EPC (Enclave Page Cache) and these keys cannot
leave the CPU, there must be some way of letting two CPUs
share the same migration keys (an encryption key and a signing
key). We suggest that Intel can provide a special enclave, e.g.,
control enclave, for two machines to share the migration keys.
The control enclaves on the source and target machines can
use remote attestation to authenticate each other and agree
on randomly generated migration keys. Both control enclaves
install the migration keys into the CPUs with a new instruction
EPUTKEY, which can only be executed by the control enclave.

For migrating an enclave, another new instruction called
EMIGRATE can be used to make the enclave non-executable,
which will deny all accesses to the enclave memory. So the
enclave states will not change during migration, which can
avoid consistency problems.

Another new instruction called ESWPOUT can be used
to swap an enclave page from EPC to normal memory. This
instruction works as follow: first, decrypt the EPC page; then,
encrypt it with the encryption key; last, generate a MAC with
the signing key. It can ensure the privacy and integrity of
enclave pages.

Some enclave pages may have been evicted to normal
memory before migration. For such pages, a new instruction
called ECHANGEOUT can change its original encryption key
to the migration encryption key and generate a new MAC. Note
that ESWPOUT and ECHANGEOUT can only be executed
after EMIGRATE.

On the target machine, new ESWPIN and ECHANGEIN
instructions perform the opposite function of ESWPOUT and
ECHANGEOUT; a new EMIGRATEDONE instruction can
verify the whole state of a migrated enclave and make the
enclave runnable. Besides, the other EPC pages such as VA
(Version Array) pages should be migrated in a similar way.

VIII. PERFORMANCE EVALUATION

To measure the performance of our design, we have con-
ducted experiments on two laptops with Intel Core i7-6700HQ
2.6GHz CPU and 8 GB memory, which run a 64-bit Ubuntu
Linux. To be specific, their model is DELL Inspiron 7559.
We use the same software stack as those on servers. KVM is
chosen as the underlying hypervisor and the version of QEMU
is 2.5.0. The guest VM has 4 VCPUs (Virtual CPU) and 2
GB memory. We run each experiment 50 times and report the
average of the results. The standard deviation is within 5%
across all the experiments and is not reported.

A. Overhead of SGX and Migration Support

We first present an experiment on the overhead introduced
by SGX protection. Here we utilize our SDK to make nbench
2.2.3 execute in an enclave. Also, we leverage Intel SDK to
port nbench into an enclave. As shown in Figure 9(a), the

overhead caused by SGX is not obvious if the workload is
computation intensive and has small memory footprint. Con-
versely, if a workload in enclave requires more safe memory,
the overhead introduced by SGX significantly increases. String
Sort is such an example. We use the performance results
reported by the benchmark itself. In particular, nbench runs
its benchmarks multiple times, taking the mean and standard
deviation until it reaches a confidence threshold such that the
results are 95% statistically certain.

To measure the overhead caused by supporting migration,
we also choose some real world applications which have se-
curity requirements, change them to applications with enclave,
and evaluate their performance with and without migration
support. The results in Figure 9(b) show that migration support
brings almost no overhead. It makes sense because in our
implementation, the extra work for each enclave thread only
involves checking the global flag, setting the local flag and
maintaining the counter for CSSA. Compared to real work-
loads, these operations are negligible. The control thread of
each enclave is only active during migration. Hence, it does
not influence the performance during normal execution.

Putting less code in enclave can enhance security due to
small TCB (Trusted Computing Base) and get better perfor-
mance due to using less EPC (Enclave Page Cache). These
are the reasons why we choose the above benchmarks and
applications (not very large). For other larger applications,
a proper way to use SGX is splitting them and putting the
security part into enclaves.

B. Performance of Migration

In the following experiments, the enclaves run either libjpeg
or mcrypt and have two worker threads.

Two-phase Checkpointing: Figure 9(c) shows how long
it takes an enclave to generate a checkpoint with different
numbers of concurrently executing enclaves. The average time
is about 255 microseconds when the total number of enclaves
is no more than 4. The time increases to 263 microseconds
when there are 8 enclaves. It is because the VM only has 4
VCPUs while each enclave has two worker threads as well as
a control thread.

The total time of generating the checkpoint also depends
on the size of output states and the encryption algorithm. In
the above evaluation, we use RC4 as the encryption method
and the output size is 20KB. The encryption process takes
about 200us. If DES is chosen as the encryption method,
the encryption process will take about 300us. An optimized
method is to utilize hardware support for encryption and
hashing [15], [7]. Another optimization opportunity is only
encrypting the sensitive data. We also make Memcached-
1.4.22 run in an enclave to test the performance of two-phase
checkpointing when the output size increases. During this
experiment, there are four threads running inside the enclave
and the output states are encrypted with AES-CBC which is
implemented with AES-NI. The results are shown in Figure 11.

Time of Waiting for All Enclaves: To make the enclave
migration independent of the underlying hypervisor, our design
first asks the VM to prepare all the enclaves. The guest OS

 0

 2

 4

 6

 8

 10

 12

N
o
rm

al
iz

ed
 T

im
e

N
um

er
ic

 S
or

t

Stri
ng

 S
or

t

B
itf

ie
ld

FP-E
m

ul
at

io
n

A
ss

ig
nm

en
t

Id
ea

H
uf

fm
an

N
eu

ra
l N

et

LU

D
ec

om
po

si
tio

n

native

Intel SDK

Our SDK

(a)

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

des cr4 mcrypt gnupg libjpeg libzip

N
o
rm

al
iz

ed
 T

im
e

w/o migration support

migration support

(b)

 240

 245

 250

 255

 260

 265

 270

1 2 4 8
Enclave NumberA

v
er

ag
e

T
w

o
-p

h
as

e
C

h
ec

k
p
o
in

ti
n
g
 T

im
e

(u
s)

(c)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1 2 4 8 16 32 64
Enclave Number

T
o
ta

l
D

u
m

p
in

g
 T

im
e

(u
s)

(d)

Fig. 9. Performance evaluation: Figure (a) shows the overhead on nbench. Figure (b) shows the overhead caused by migration support. Figure (c) shows
the time of two-phase checkpointing and Figure (d) shows the time of suspending all enclaves.

 0

 500

 1000

 1500

 2000

 2500

 3000

1 2 4 8 16
Enclave Number

T
o
ta

l
R

es
to

re
 T

im
e

(u
s)

(a)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

8 16 32 64
Enclave Number

T
o
ta

l
T

im
e

(m
s)

w/o enclave

w/ enclave

(b)

 0

 2

 4

 6

 8

 10

 12

 14

8 16 32 64
Enclave Number

D
o
w

n
ti

m
e

(m
s)

w/o enclave

w/ enclave

(c)

 0

 200

 400

 600

 800

 1000

 1200

8 16 32 64
Enclave Number

T
ra

n
sf

er
 M

em
o
ry

 (
M

B
)

w/o enclave

w/ enclave

(d)

Fig. 10. Performance evaluation: Figure (a) shows the time of restoring all enclaves. Figure (b), (c), (d) show the overhead of total migration time, downtime
and the amount of transferred data.

 0

 50

 100

 150

 200

1 2 4 8 16 32 Size (MB)

T
im

e
(m

s)

Fig. 11. The time of two-phase checkpointing on Memcached.

informs all the enclave processes of migration and waits until
they are ready. The total dumping time of such procedures is
shown in Figure 9(d). The time is calculated from the guest
OS receiving a migration notification to all the enclaves getting
ready. When the number of enclaves is no more than 8, the
total time is within 940us. When the number reaches 16, the
total time is about 1700us. As the total number of enclaves
increases, the number of threads also increases and it takes
more time to schedule the control and worker threads.

Restoring Enclaves on Target VM: Figure 10(a) shows
the time of restoring all the enclaves on the target machine. The
total time grows linearly as the number of enclaves increases,
because the enclaves are rebuilt one by one. An optimized
method is using multiple threads to rebuild enclaves to make
maximum use of parallelism. Since there are some concur-
rency restrictions of SGX instructions, building an enclave is
hard to be accelerated. For instance, the hardware disallows
EADD/EEXTEND to concurrently run on one SECS (SGX
Enclave Control Structure).

Live Migration: We run two VMs respectively, one with
some running enclave applications, the other with the same
number of original applications. We compare the important
performance indicators of their live migration based on shared

storage. Figure 10(b) shows the total migration time. The
migration of VM with no more than 32 enclaves has about
2% overhead. The overhead increases to 5% when the number
of enclaves reaches 64. This is consistent with the overhead of
transferring memory, as shown in Figure 10(d). The reasons
for the overhead are that each enclave needs to dump its states
and the guest OS needs to record each enclave. Figure 10(c)
represents that the downtime grows as enclave number in-
creases. This is because it takes more time for more enclaves to
generate the checkpoints. Although we count the time of two-
phase checkpointing in the downtime, the other applications
without enclaves in the VM can run when the enclaves are
generating the checkpoints.

IX. RELATED WORK

SGX-assisted TCB Reduction: There are also several
prior work that leverage SGX to provide trustworthy execution.
SCONE [2] builds secure Linux containers with Intel SGX.
Ryoan [10] puts a sandbox into an enclave, which can prevent
untrusted applications from leaking secret data. VC3 [16]
uses SGX to run distributed MapReduce computations while
keeping the code and data secret and ensuring the correctness
and completeness of the results. However, they assume the
cloud providers are benign and do not consider VM migration.
Haven [3] leverages the hardware-enforced protection of SGX
to defend against privileged code and physical attacks, but also
addresses the dual challenges of executing unmodified legacy
binaries and protecting them from a malicious host. Yet, it
does not consider how to securely migrate the enclave among
physical machines.

Secure Live VM Migration: Live VM migration [6], [8]
is a key enabling technique in nowadays data center and cloud
platforms. However, the security of a live VM migration would
notably affect the security of end-user applications. Hence, the
default Xen migration tool uses SSL to secure the transfer.

PALM [30], [28] pioneers in providing security-preserved live
migration of a VM under the protection of a secure hypervisor
(i.e., CHAOS [5], [4]). Compared to PALM, our work faces a
stronger threat model and a unique challenge where no system
software is trusted and can access the protected enclave states.
Given that there is currently no support for VM as well as VM
migration in SGX, the goal of our work is to empower a VM
with SGX protection with the ability of live migration, and
thus to embrace both strong security and rich functionality.

Consistency and Rollback Attacks: Watson exploits con-
currency vulnerabilities in system call wrappers [22]. Yang
et al. [27] show attacks caused by concurrency bugs. These
attacks are similar to our consistency attack. The difference
is that our attack works on SGX enclave which has more
security constraints. Weichbrodt et al. [23] exploit synchro-
nization bugs in Intel SGX enclaves on a single machine.
Some previous work [14], [19], [20] ensures rollback resistance
without making the system vulnerable to crashes. Raoul and
Frank propose Ariadne [19], [20] to solve the state-continuity
problem of stateful protected modules such as SGX enclaves.
Such solutions can be adopted in our system to prevent
rollback attacks on the single machine, to an extent. However,
they do not consider about state-continuity among multiple
machines (e.g. under the VM migration situation).

X. CONCLUSION

This paper focuses on the migration of VMs with SGX en-
claves running inside. Traditional methods of VM migration do
not work because, with SGX protection, the running states of a
VM cannot be entirely transferred, since the hypervisor cannot
access the memory and CPU context of enclaves. We present
a software-based mechanism that supports enclave migration,
which is able to enforce all the security properties required. We
further implement it on real SGX enabled hardware and also
propose a set of design suggestions for future SGX extensions.

XI. ACKNOWLEDGMENT

We thank the anonymous reviewers for their insight-
ful comments. This work is supported in part by National
Key Research and Development Program of China (No.
2016YFB1000104), China National Natural Science Founda-
tion (No. 61303011 and 61572314), a research grant from
Huawei Technologies, Inc., National Top-notch Youth Talents
Program of China, Zhangjiang Hi-Tech program (No. 201501-
YP-B108-012), a foundation for the Author of National Ex-
cellent Doctoral Dissertation of PR China (TS0220103006),
Singapore NRF (CREATE E2S2), NSF via grant number CNS
1513687, and ONR via grant PHD.

REFERENCES

[1] I. Anati, S. Gueron, S. Johnson, and V. Scarlata. Innovative technology
for cpu based attestation and sealing. In HASP, volume 13, 2013.

[2] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. OKeeffe, M. L. Stillwell, et al. Scone:
Secure linux containers with intel sgx. In OSDI, 2016.

[3] A. Baumann, M. Peinado, and G. Hunt. Shielding applications from an
untrusted cloud with haven. ACM Transactions on Computer Systems,
33(3):8, 2015.

[4] H. Chen, J. Chen, W. Mao, and F. Yan. Daonity–grid security from
two levels of virtualization. Information Security Technical Report,
12(3):123–138, 2007.

[5] H. Chen, F. Zhang, C. Chen, Z. Yang, R. Chen, B. Zang, P.-c. Yew, and
W. Mao. Tamper-resistant execution in an untrusted operating system
using a virtual machine monitor. Parallel Processing Institute Technical
Report, (FDUPPITR-2007-08001), 2007.

[6] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield. Live migration of virtual machines. In NSDI, 2005.

[7] N. Firasta, M. Buxton, P. Jinbo, K. Nasri, and S. Kuo. Intel avx:
New frontiers in performance improvements and energy efficiency. Intel

white paper, 2008.

[8] J. G. Hansen. Virtual Machine Mobility with Self-Migration. PhD thesis,
Citeseer, 2009.

[9] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del Cuvillo.
Using innovative instructions to create trustworthy software solutions.
In HASP, page 11, 2013.

[10] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel. Ryoan: A distributed
sandbox for untrusted computation on secret data. In OSDI, 2016.

[11] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell,
and M. Horowitz. Architectural support for copy and tamper resistant
software. In ASPLOS, pages 168–177, 2000.

[12] D. Lie, C. A. Thekkath, and M. Horowitz. Implementing an untrusted
operating system on trusted hardware. In SOSP, 2003.

[13] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar. Innovative instructions and
software model for isolated execution. In HASP, page 10, 2013.

[14] B. Parno, J. R. Lorch, J. R. Douceur, J. Mickens, and J. M. McCune.
Memoir: Practical state continuity for protected modules. In S&P, 2011.

[15] J. Rott. Intel advanced encryption standard instructions (aes-ni).
Technical report, Technical report, Intel, 2010.

[16] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado,
G. Mainar-Ruiz, and M. Russinovich. Vc3: Trustworthy data analytics
in the cloud using sgx. In S&P, pages 38–54, 2015.

[17] M.-W. Shih, S. Lee, T. Kim, and M. Peinado. T-sgx: Eradicating
controlled-channel attacks against enclave programs. In Proceedings of

the 2017 Annual Network and Distributed System Security Symposium

(NDSS), San Diego, CA, 2017.

[18] R. Sinha, S. Rajamani, S. Seshia, and K. Vaswani. Moat: Verifying
confidentiality of enclave programs. In CCS, 2015.

[19] R. Strackx, B. Jacobs, and F. Piessens. Ice: A passive, high-speed,
state-continuity scheme. In ACSAC, pages 106–115. ACM, 2014.

[20] R. Strackx and F. Piessens. Ariadne: A minimal approach to state
continuity. In USENIX Security, 2016.

[21] J. Szefer and R. B. Lee. Architectural support for hypervisor-secure
virtualization. In ASPLOS, pages 437–450, 2012.

[22] R. N. Watson. Exploiting concurrency vulnerabilities in system call
wrappers. WOOT, 7:1–8, 2007.

[23] N. Weichbrodt, A. Kurmus, P. Pietzuch, and R. Kapitza. Asyncshock:
Exploiting synchronisation bugs in intel sgx enclaves. In European Sym-

posium on Research in Computer Security, pages 440–457. Springer,
2016.

[24] Wikipedia. https://en.wikipedia.org/wiki/Two-phase commit protocol.
Two-phase Commit Protocol.

[25] Y. Xia, Y. Liu, and H. Chen. Architecture support for guest-transparent
vm protection from untrusted hypervisor and physical attacks. In HPCA,
pages 246–257, 2013.

[26] Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks: Determin-
istic side channels for untrusted operating systems. In S&P, 2015.

[27] J. Yang, A. Cui, S. Stolfo, and S. Sethumadhavan. Concurrency attacks.
In HotPar, 2012.

[28] F. Zhang and H. Chen. Security-preserving live migration of virtual
machines in the cloud. Journal of network and systems management,
21:562–587, 2013.

[29] F. Zhang, J. Chen, H. Chen, and B. Zang. Cloudvisor: retrofitting protec-
tion of virtual machines in multi-tenant cloud with nested virtualization.
In SOSP, pages 203–216, 2011.

[30] F. Zhang, Y. Huang, H. Wang, H. Chen, and B. Zang. Palm: security
preserving vm live migration for systems with vmm-enforced protec-
tion. In Asia-Pacific Trusted Infrastructure Technologies Conference,
pages 9–18. IEEE, 2008.

https://en.wikipedia.org/wiki/Two-phase_commit_protocol

