
Reducing World Switches in Virtualized Environment with Flexible

Cross-world Calls

Wenhao Li, Yubin Xia, Haibo Chen, Binyu Zang, Haibing Guan

Shanghai Key Laboratory of Scalable Computing and Systems
Shanghai Jiao Tong University

{liwenhaosuper, xiayubin, haibochen, byzang, hbguan}@sjtu.edu.cn

Abstract

Modern computers are built with increasingly complex soft-

ware stack crossing multiple layers (i.e., worlds), where cross-

world call has been a necessity for various important pur-

poses like security, reliability, and reduced complexity. Un-

fortunately, there is currently limited cross-world call sup-

port (e.g., syscall, vmcall), and thus other calls need to be

emulated by detouring multiple times to the privileged soft-

ware layer (i.e., OS kernel and hypervisor). This causes not

only significant performance degradation, but also unneces-

sary implementation complexity.

This paper argues that it is time to rethink the design of

traditional cross-world call mechanisms by reviewing exist-

ing systems built upon hypervisors. Following the design phi-

losophy of separating authentication from authorization, this

paper advocates decoupling of the authorization on whether

a world call is permitted (by software) from unforgeable iden-

tification of calling peers (by hardware). This results in a

flexible cross-world call scheme (namely CrossOver) that al-

lows secure, efficient and flexible cross-world calls across

multiple layers not only within the same address space, but

also across multiple address spaces. We demonstrate that

CrossOver can be approximated by using existing hardware

mechanism (namely VMFUNC) and a trivial modification

of the VMFUNC mechanism can provide a full support of

CrossOver. To show its usefulness, we have conducted case

studies by using several recent systems such as Proxos, Hyper-

Shell, Tahoma and ShadowContext. Performance measure-

ments using full-system emulation and a real processor with

VMFUNC shows that CrossOver significantly boosts the per-

formance of the mentioned systems.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from Permissions@acm.org.

ISCA ’15, June 13 - 17, 2015, Portland, OR, USA
c© 2015 ACM. ISBN 978-1-4503-3402-0/15/06$15.00

DOI: http://dx.doi.org/10.1145/2749469.2750406

1. Introduction

The virtualization evolution adds more hierarchies verti-

cally to the commodity software stack, which now has at

least four protection rings accommodating hypervisors, hy-

pervisor utilities, operating systems and user-level programs.

The multi-tenancy nature of virtualization further horizon-

tally introduces multiple protection domains (i.e., virtual ma-

chines) in a single computer. Further, the increasing popu-

larity of nested virtualization [20, 4, 46] for usage scenarios

like “cloud on cloud”, cloud interoperability [41] and new se-

curity foundation [46] further complicate the software stack

both vertically and horizontally.

The complicated software stack brings both opportunities

and challenges. On one hand, programmers have more free-

dom to leverage the software layers to implement various

features, including security [9, 10, 45, 11, 46, 28], decou-

pling functionalities [17, 41, 18, 1, 28] and improved man-

agement [43]. On the other hand, the proliferation of soft-

ware layers and protection domains (uniformly called worlds

in this paper) also leads to more complex control transitions

across worlds. For example, a cross-VM call usually requires

frequent transitions between VMs and the hypervisor (see sec-

tion 2 for more examples and details). Further, it usually re-

quires non-trivial coding effort, which is complex and hard to

reason about.

We attribute such unnecessary overhead and complexity to

the lack of flexible cross-world control transitions. Typically,

current hardware mechanisms mostly only support calls from

user-level programs to operating systems (syscall) and those

from a VM to the hypervisor (vmcall, also called hypercall),

as shown in Figure 1. Hence, a ring crossing call from one

ring to another one needs to bounce multiple times from/to

the hypervisor, which does the authentication by checking the

identities of calling peers and the authorization by checking

whether such a call is allowed or not. Further, calls that not

only cross rings but also protection domains (e.g., address

space) make such invocation even more complex.

This paper argues that it is time to rethink the cross-world

call mechanisms in contemporary processors with multiple

rings and running multiple software layers. Following the de-

sign philosophy of separating authentication from authoriza-

tion, this paper advocates offloading authentication of com-

VM-1

User

VM-1

Kernel

Host Kernel (Hypervisor)

Host

User

VM-2

User

VM-2

Kernel

non-root mode root mode

G
u

e
s
t
ri

n
g

-0
G

u
e

s
t

ri
n
g

-3

H
o

s
t

ri
n

g
-0

H
o

s
t

ri
n

g
-3

Indirect (need multiple hops)Direct (only one hop)

Host

User

non-root mode

v
m

c
a

ll
s
y
s
c
a

ll

s
y
s
c
a

ll

v
m

c
a
ll

Figure 1: Ring crossing in virtualized machines. Solid lines

indicate direct ones supported by current hardware, dashed

lines are those indirect ones.

municating worlds into hardware and distributing the autho-

rization into the callee. This results in a flexible cross-world

call scheme (called CrossOver) that allows secure, efficient

and flexible calls directly across multiple layers not only

within the same protection domain, but also across multiple

domains.

Specifically, before the first invocation of a cross-world call

(world-call for brevity), both the caller and callee ask the hy-

pervisor to register themselves in hardware and each gets an

unforgeable world ID. Then they can directly switch from

one to another through a new instruction named world_call

without the involvement of other privileged software compo-

nents (e.g., the OS kernel for a syscall or an inter-process

call, and the hypervisor for a vmcall or a cross-VM call).

CrossOver achieves mutual distrust between the caller and

its callee, which are isolated in different memory spaces. For

each world-call, the hardware will provide a world ID to the

callee, by which the callee can further implement authoriza-

tion policy in software, and the caller can ensure the control

flow integrity of call/return by maintaining calling states in

its own memory space.

Though there is currently no commodity processor sup-

porting CrossOver, we approximate CrossOver by reusing

a recent hardware extension for virtualization. Specifically,

CrossOver leverages the VMFUNC mechanism [22] to pro-

vide intervention-free cross-VM calls. Further, we show that

trivially extending the VMFUNC mechanism can provide the

full support of CrossOver.

We have implemented a prototype of CrossOver based on

KVM to support cross-VM calls by leveraging VMFUNC.

To demonstrate its effectiveness and efficiency, we mimic

stripped-down implementation of four recent (close-sourced)

systems and use CrossOver to accelerate the cross-VM inter-

actions.

In summary, this paper makes the following contributions:

• A comprehensive study that motivates the necessity of flex-

ible cross-world calls to reduce cross-world switches.

• The design of CrossOver that separates authorization and

authentication for secure and flexible cross-world calls.

• A real-world approximated implementation and evaluation

of CrossOver using VMFUNC.

The rest of this paper is organized as follows. The next sec-

tion presents a detailed study on recent systems, which mo-

tivates the necessity of secure and flexible cross-world calls.

Section 3 presents the general design of CrossOver, followed

by how to approximate CrossOver by leveraging VMFUNC

to provide cross-VM calls. Section 6 describes how to apply

CrossOver to several recent systems. Next, section 7 presents

the evaluation results of CrossOver and section 8 discusses

the related work close to CrossOver. Finally, we discuss the

limitations and future work of CrossOver in section 9 and

conclude this paper.

2. The Case for Flexible Cross-World Calls

The demand of cross-world calls: With virtual machine

monitors (also called hypervisors) being the new system soft-

ware foundation for commodity software stack, there are

more software layers and modes with different privileges.

Processor vendors like Intel and AMD have introduced cor-

responding hardware extensions (VT-x or SVM), by introduc-

ing a new set of privilege modes (e.g., VMX root operation in

Intel’s term). This results in at least four protection rings and

multiple address spaces. Similarly, the support of TrustZone

and virtualization on ARM platforms also introduce four priv-

ilege rings (User, Kernel, Hyp and Monitor Mode).

The pervasive deployment of virtualization also enables a

number of innovative usages for various purposes, such as se-

curity, decoupling and management. Table 1 lists a set of

example systems whose core techniques rely on calls that

cross multiple protection domains and rings (uniformly called

world here). With existing mechanisms such as syscall and

vmcall, a simple cross-world call usually needs to detour mul-

tiple times to/from the most privileged software (e.g., hyper-

visor). The following uses some example systems to illustrate

this issue (also shown in figure 21):

• Proxos: Proxos [38] is a system that enables an applica-

tion to selectively route its system calls between a trusted

private OS and an untrusted commodity OS. This system

is very useful for isolating some security-sensitive parts

(like SSL certificate service) from other non-sensitive parts

handling application logic. Hence, Proxos strikes a good

balance between security and functionality. The core of

Proxos is selectively redirecting system calls between the

two OSes (i.e., VMs). However, as shown in Figure 2

(a), redirecting a syscall requires at least 6 ring crossings

and context switches. This incurs non-trivial performance

1Note that some systems were designed when there is no hardware virtu-

alization extensions like VT-x and SVM. We slightly adjust the designs to fit

contemporary processors with VT-x or SVM support.

Table 1: A list of example systems that rely on cross-world call to implement critical functionality.

System Description Semantic
Theoretically

Minimal
Actual Cross-ring Calls Times

S
ec

u
ri

ty

Proxos [38]
A system that splits system calls from application to redi-
rect those critical ones to trusted OS. All the system calls
are intercepted and redirected by a trusted hypervisor.

syscall
KVM1 → KVM2 →
KVM1

KVM1 → K
hypervisor

host →UV M2 → KVM2 →

UVM2 → K
hypervisor

host →UV M1

3X

Tahoma [13]

A system that use virtual machine to isolate browser.
Each web instance runs in a VM, and a manager running
in domain-0 controls all instances by cross-VM IPC. In
this paper, we use VT-x (which is not available that time)
to re-implement Tahoma.

IPC call
UV M → Uhost →
UV M

UVM →KVM →Khost →Uhost →Khost →
KVM →UVM

3X

Overshadow [11]

A system that protects user applications from untrusted
OS. All the system calls are intercepted by a trusted hy-
pervisor for security checking. Two user-level shims are
used for interaction between OS and application.

syscall
UV M → KVM →
UV M

UVM → hypervisor → U shim−cloaked
VM →

hypervisor→ KVM →U shim−uncloaked
VM →

hypervisor → U shim−cloaked
VM →

hypervisor→UVM

4.5X

MiniBox [29]
A two-way sandbox. It uses hypervisor to intercept and
selectively redirect system calls from protected applica-
tions to a trusted kernel.

syscall
UV M1 → KVM2 →
UV M1

UVM1→ hypervisor→UVM2→KVM2→
UVM2 → hypervisor→UVM1

3X

CloudVisor [46]

A system that uses nested virtualization to protect guest
VM from untrusted hypervisor. The original hypervisor
runs as a VM, while CloudVisor runs at the highest pri-
ority. All the VMExit are intercepted by CloudVisor for
security check.

I/O op
KVM → U

qemu

dom0 →
KVM

KVM → CloudVisor → K
hypervisor
VM →

CloudVisor → Kdom0 → U
qemu

dom0 →

Kdom0 → CloudVisor → K
hypervisor
VM →

CloudVisor→ KVM

5X

D
ec

o
u

p
li

n
g

FUSE [1]
A user space file system. OS intercepts and redirects
FS-related system calls to a user space daemon.

syscall
Uapp → U f use →
Uapp

Uapp→ K→U f use→ K→Uapp 2X

Emulated devices
in Xen [3]

Xen runs a specific VM (dom-0) to manage devices, in-
cluding real ones and emulated ones (e.g., by Qemu). A
guest VM communicates with dom-0 for I/O, which is
intermediated by the hypervisor.

I/O op
KVM → U

qemu

dom0 →
KVM

KVM→ hypervisor→Kdom0→U
qemu

dom0 →
Kdom0→ hypervisor→ KVM

3X

ClickOS [30]

ClickOS is a Xen-based software platform optimized for
middlebox processing. It leverages Xen’s backend/fron-
tend driver model and uses miniOS to minimize the per-
formance overhead.

I/O op
KVM → U

qemu

dom0 →
KVM

K
net f ront
VM → hypervisor → Knetback

dom0 →

hypervisor→ K
net f ront
VM

2X

Xen-Blanket [41]

A system that use nested virtualization to implement
“virtualize once and run everywhere”. A nested layer
named Xen-Blanket that can homogenize today’s di-
verse cloud infrastructures, e.g., run a KVM VM on Xen
platform and vise versa.

I/O op
KVM → U

qemu

dom0 →
KVM

K
ring−1
VM → K

ring−0
VM → K

ring−1
guest−dom0 →

K
ring−0
VM → hypervisor → K

ring−1
host−dom0 →

U
qemu

host−dom0 → K
ring−1
host−dom0 →

hypervisor → K
ring−0
VM → K

ring−1
guest−dom0 →

K
ring−0
VM → K

ring−1
VM

6X

HyperShell [18]
A VM management tools which uses system call execu-
tion redirection to run a host user-level shell on top of a
guest kernel.

syscall
Uhost → KVM →
Uhost

Uhost → Khost → KVM →UVM → KVM →
Khost →Uhost

3X

V
M

I

ShadowContext [43]
A VMI tools that uses system call redirection for intro-
spection. The system calls from a trusted VM are selec-
tively redirected to an untrusted VM to execute.

syscall
UV M1 → KVM2 →
UV M1

UVM1 → KVM1 → Khost → UVM2 →
KVM2→UVM2→Khost →KVM1→UVM1

4X

1

2

3

4

5

6

7

(d) ShadowContext

Trusted VM Untrusted VM

G
ue

st
 r

in
g-

3
G

ue
st

 r
in

g-
0

H
os

t r
in

g-
0

Introspection process

Kernel

Dummy process

Kernel

Hypervisor

(b) HyperShell

1

26

VM Host

G
ue

st
 r

in
g-

3
G

ue
st

 r
in

g-
0

H
os

t r
in

g-
0

Helper

Hypervisor

5

4

3
Shell

Kernel

H
os

t r
in

g-
3

1

2

3

4

5

6

(a) Proxos

VM1 VM2

G
ue

st
 r

in
g-

3
G

ue
st

 r
in

g-
0

H
os

t r
in

g-
0

Trusted

app with

MiniOS

Stub process

Untrusted kernel

Hypervisor

8

(c) Tahoma

4

53

VM Host

G
ue

st
 r

in
g-

3
G

ue
st

 r
in

g-
0

H
os

t r
in

g-
0

Manager

Hypervisor

1

6 2

Brows er

Kernel

H
os

t r
in

g-
3

Figure 2: Cross-world calls in existing systems. The theoretically minimal cross-world calls are two, for each case.

overhead due to the additional world switches and local-

ity loss. In fact, a read or write syscall incurs more than

30X overhead (0.45 and 0.42 us vs. 13.51 and 13.24 us).

Given that a number of syscalls to the untrusted OS need

to be redirected, this may turn into notable performance

overhead for system-intensive workload. For example,

the average number of instructions executed between two

syscalls for BIND, Apache and MySQL are 2,445, 3,368

and 12,435 [36]. For an Apache web server, where the

overhead for an empty write for Proxos is 31.5X (39,720

vs. 1,350 cycles), Proxos would incur up to 8X overhead,

depending on the percentage of redirected syscalls.

• HyperShell: HyperShell [18] is a recent virtual machine

management tool that allows a shell (e.g., bash) inside a

host machine to execute management utilities (e.g., “ps

aux”) on behalf of the guest VMs. It significantly eases the

process of managing VMs in a private cloud with a large

number of VMs. A key challenge is the semantic gap, by

which the management VM cannot understand the seman-

tics inside a guest VM. HyperShell addresses this by in-

troducing a technique called reverse syscall execution, by

which a syscall issued by a utility from the host is redi-

rected from the host to the guest VM for execution. This,

similarly, requires frequent bouncing from the hypervisor,

which incurs at least 6 ring crossings and context switches

for a single system call. As a result, the reported average

slowdown for a set of common utilities is 2.73X.

• Tahoma: Tahoma [13] is a browser operating system that

provides strong isolation among browser instances by run-

ning the browser kernel in the host and running each

browser instance inside a guest VM. Hence, Tahoma can

contain many attacks to a browser instance inside the VM,

without affecting other instances and the browser kernel.

One key enabling technique of Tahoma is the RPC between

the browser kernel and a browser instance. However, it also

requires multiple ring crossings and context switches due

to frequent bouncing to the hypervisor, as shown in Fig-

ure 2 (C). This makes the cost of interactions between a

browser kernel and its instances much more expensive (i.e.,

compared to a single function call).

• ShadowContext: ShadowContext [43] is a virtual machine

introspection tool that allows the host to transparently

check security variants of guest VMs. The key idea is

stealthily creating a dummy process inside a guest VM and

redirecting some introspection-related syscalls to the guest

VM, which is executed by the dummy process. However,

under existing syscall mechanism, this requires multiple

bouncing from both the kernel and the hypervisor, causing

at least 8 ring crossings and context switches. This turns

into non-trivial overhead for each redirected syscalls.

Existing mechanism is NOT flexible: Table 1 lists more

systems that require cross-world call mechanisms. The se-

mantics of many calls are simple and clear, which involve

transitions from the kernel or user mode in one VM to that in

another VM. However, all of them require a non-trivial num-

ber of additional bouncing to/from the hypervisor or the OS

kernel. Hence, a flexible and efficient cross-world call mech-

anism can significantly boost the performance and reduce the

implementation complexity of such systems.

One may question that bouncing from hypervisor or kernel

is necessary for the sake of security and isolation. This is true

in general. However, for many cases in Table 1, the hypervi-

sor or OS kernel only simply does the bouncing work (like

saving and restoring context), without doing much complex

security checks. This is because, many of these systems only

require one-way isolation (isolating an untrusted part from a

trusted part, not vice versa). For examples, Proxos requires

isolating untrusted OS from a trusted OS; HyperShell, Shad-

owContext, ShadowContext, Xen-Blanket and front/back end

drivers in Xen mostly require only isolating guest VMs from

the host/management VM. Hence, in such cases, there is little

need to check security policy in the hypervisor.

Even if the two systems require two-way isolation, like

Minibox [29] and FUSE [1], they can still be done by using

separating authentication from authorization. That is, before

making a call, a caller and a callee can authenticate them-

selves by the hardware through the hypervisor or OS kernel.

Afterwards, the call can be done by direct authorization be-

tween the peers without intervention from the hypervisor be-

fore the authentication was revoked.

Hence, to efficiently support many systems on current vir-

tualized stack, providing a flexible cross-world call mecha-

nism is a key to high performance and low implementation

complexity. This can be done by separating the authorization

on whether a cross-world call is allowed from the authentica-

tion of calling peers during the world transition from one peer

to another.

3. Cross-world Call

This section first describes the abstraction of world and its

hardware embodiment (called world table), and then presents

the interfaces and hardware extensions to support cross-world

calls (world-call for short in the following text).

3.1. Design Principle

We take the most common threat model for cross-world

design: the most privileged software and hardware are trusted,

while the caller and callee of cross-world call are mutually

distrusted.

Deciding whether a cross-world call is allowed or not re-

sembles deciding a capability in capability-based systems [40,

42]. Traditional capability-based systems usually have to

make a tradeoff between flexibility and performance when

deciding the types of capabilities and the form of unforgeable

token (see Table 2).

Commodity OS and hypervisor use a coarse-grained hard-

ware privilege separation mechanism (e.g., kernel level and

user level or root mode and non-root mode) and let the privi-

leged software define capabilities as well as tokens. It is flex-

ible to define various capabilities, such as the permissions to

a file. The unforgeability of tokens, like FD or VM ID, are

also checked by the privileged software, while the hardware

only has to protect privileged software from less privileged

ones. However, since each access has to be checked by the

privileged software to enforce capabilities, the performance

overhead caused by world crossing is inevitably high.

Recent hardware proposals extend hardware to define and

enforce capabilities, as well as ensure the unforgeability of

token, in the form of fat-pointer and tag table in CHERI [42],

HardBound [15], Intel’s MPX [2]. While this solution can sig-

nificantly improve the performance, the types of capabilities

are limited by hardware.

CrossOver uses a hybrid approach of the above to support

cross-world calls by separating authentication from authoriza-

Table 2: Comparision with traditional capability systems

Systems Capabilities Token Enforce capability

CHERI HW-defined, not flexible HW-maintained, efficient HW: Hardware maintains tokens and capabilities, and checks each fat-pointer dereference

File System SW-defined, flexible SW-maintained, not efficient HW+SW: Hardware protects OS and isolates processes, OS checks each file operation by file descriptor

CrossOver SW-defined, flexible HW-maintained, efficient HW+SW: Hardware isolates worlds and provides unforgeable WIDs for each call, callee authorizes

tion: the authentication of worlds between callees and callers

is done in hardware through unforgeable tokens and the autho-

rization whether a caller is permitted to call a specific callee is

done in software (e.g., a callee may refuse a call from a caller

based on tokens). This achieves both flexibility and perfor-

mance for cross-world calls. On one hand, CrossOver still

keeps the coarse-grained hardware privilege separation mech-

anism and lets the privilege software (e.g., OS or hypervisor)

to define different capabilities in a flexible way. On the other

hand, CrossOver extends hardware to provide unforgeable to-

kens so that for each cross-world call, no privileged software

is involved, which reduces the time of world crossing and thus

improves performance.

3.2. World & World Table

We use a world table to implement the unforgeable token

to uniquely identify a world. We define a world as an address

space in a specific mode. The address space is determined

by page tables (including nested page table) and the mode

is determined by all privilege modes (e.g., rings, root/non-

root modes). Each world also has one entry point address.

A name space needs to register itself to the hardware to be

a world, which adds an entry in a table named world table.

Each entry in the table represents the information of a world,

and is indexed by a unique WID (World ID). The WID will

be used as an unforgeable token for authentication during a

cross-world call.

Inspired by the design of software-managed TLB, we place

the world table in a region of memory that can be accessed

only by the highest privileged software (e.g., the hypervisor).

There is a world table cache (like a TLB) accessed by hard-

ware during a cross-world call. The privileged software pro-

vides a software interface to create and delete world entries

to upper layers (e.g., guest VM). When creating a new world,

the hypervisor will create a unique WID for world identifica-

tion. WID is unforgeable as the hardware will check if WID is

valid and accurately represent the caller and callee by check-

ing the world table cache. A hypervisor can limit the number

of worlds a VM can create to avoid DoS (deny of service)

attacks from a malicious VM.

3.3. World Call & Return

There are multiple choices to design the world-call mecha-

nism. One is using asynchronous call through message pass-

ing, i.e., the caller sends a message to the callee and wait

for the reply. However, such asynchronous calls have sev-

eral drawbacks. First, the design may only be suitable for

batch-style workload that have a massive amount of threads

and syscalls to batch [36], but not for latency-sensitive work-

loads and workloads with a small number of threads (e.g.,

equals to #cores). This is because the callee must wait un-

til it is scheduled to run, which could lead to long and un-

predictable latency. Second, for data-intensive workloads,

switching to another CPU core is not cache-friendly since the

caller and callee usually run on different processor cores. An-

other design choice is using synchronous calls through IPI

(inter-processor interrupt). However, such a design will be

tightly bound with scheduling mechanisms (in both guest OS

and hypervisor) in order to ensure that a specific processor is

running the callee just before calling. It means that for each

world-call, the caller needs to invoke a privileged operation to

the schedulers for such binding, which requires ring crossing

itself and is not suitable for our requirements.

CrossOver chooses a non-disruptive synchronous call

scheme, just like syscalls or vmcalls. The processor switches

states from a caller to its callee and executes the callee code’s

immediately. This preserves cache locality of the calling pro-

cess, has very low latency and is non-disruptive to other VM-

s/applications. Specifically, once an address space has created

its world, it can use a new instruction, world_call, to switch

to a callee’s world to execute. When return, the processor still

uses world_call to change back to the caller’s world.

The mechanism of CrossOver enables the mutual distrust

between a caller and a callee. First, the two memory spaces

are isolated by conventional hardware like MMU and privi-

lege modes. Further, the callee needs to authenticate the caller

to enforce access policies, while the caller needs to keep the

integrity of control flow to prevent control flow hijacking at-

tacks such as return-oriented attack [33, 5].

World-call setup: A world-call requires some initializa-

tion. First, the caller and callee must both have created their

own worlds. Second, the caller needs to create a shared mem-

ory mapping with the callee to store calling parameters and

return data. Such mapping may require vmcalls or syscalls,

but it is a one-time effort that only has to be done for the

first time. The calling convention can be negotiated by the

two communicating worlds during setup and simple parame-

ters can be passed directly through registers for performance.

Third, right before issuing world_call, the caller needs to save

its running states for resuming execution after return, as well

as the WID of callee for checking.

World-call: Once a world_call is executed, the processor

first identifies the caller by using its current WID to search the

corresponding entry in the world table with current page table

pointers and modes. If no entry is found in the world table, it

means that a namespace issues a world call without creating

a world first, which will raise an exception to the hypervisor.

Then, the processor will look up the callee entry by its WID

Kernel Kernel

CPU-3 CPU-4

world_call

Kernel

CPU-1 CPU-2

Kernel

CPU-3 CPU-4

world_call

CPU-1 CPU-2

VM-1 VM-2
VM-1

VM-2

User-1
User-2

User-3 User-4 User-3 User-4User-1 World

Context

world_call

world_call

Figure 3: World-call process. The user-2 process in VM-1 calls a world in VM-2. After that, the status of CPU-2 switches from

user-2 to the callee and executes the world-call. When the world returns, the status will be back to the left part.

which is passed as the parameter of world_call. Similarly, an

exception will be raised if no entry is found in the world table.

After that, the processor switches to the callee’s environment

by changing the page tables and modes, and jumps to the en-

try point address to run. It also passes the caller’s WID to the

callee (e.g., through a register).

Now the processor is in callee’s context and executing the

callee’s code (see Figure 3). Typically, the callee first checks

whether the caller is authorized with the caller’s WID. Once

the authorization is OK, the callee fetches parameters from

shared memory, executes service, and puts the results on the

shared memory as return value. Finally, it issues world_call

again with caller’s WID as parameter.

World-call return: Again, the processor searches the

WID of both the caller and callee, switches to caller’s con-

text, jumps to caller’s entry point address, and passes callee’s

WID to it. The caller first checks whether this is a new world-

call or a return. If it is a return, the caller just restores all

the states and resumes execution. Since the running states are

maintained by the caller in its memory space, they are isolated

from the callee.

3.4. Discussion

Mutual distrust between caller and callee: The mech-

anism of CrossOver enables the mutual distrust between a

caller and a callee by both software and hardware. The hard-

ware provides two functionalities: isolation between different

worlds, and authenticating WIDs during a world switch. The

rest is done by software, including authorization and calling

flow control, as well as preventing DoS attack.

For callee DoS attack, e.g., a malicious callee that never

return, a caller can use timeout mechanism to detect such sit-

uation and cancel the world-call by force. Once timeout, the

hypervisor will switch the context to the caller and invoke

the handler. Thus, the caller can have a chance to cancel the

world-call. Since setting up a timeout requires a vmcall to hy-

pervisor, the caller can set a relatively long timer for multiple

world-calls to amortize the overhead.

Put calling authorization to hardware: An alternative

design is to check the calling authorization in hardware by

adding another table, named binding table, which records

the bindings between callers and callees. This table is also

managed by privileged software and checked by the proces-

sor. Before calling, a callee first authorizes a legal caller the

calling capability, and then requires the hypervisor to create

an entry in the binding table with both WIDs. This binding is

needed only once between two worlds. When a caller issues

world_call, the hardware first checks whether the binding has

been established and refuses to continue if not. Thus when

the callee is running, it can ensure that the calling has been

authorized.

Such a design may further improve the performance of

authorization in the callee but may be less flexible. In

CrossOver, we minimize the hardware modification and pro-

vide only WID for each call. Thus the callee can implement

more flexible policies such as offering different services for

different worlds by creating only one world in the hardware.

4. Approximating CrossOver with VMFUNC

There are ten types of cross-world calls in modern virtu-

alized architecture, among which only four can be done in

one hop, as shown in Table 3. Fortunately, we observe that a

new feature introduced recently in Intel’s processor, namely

VMFUNC, can be reused to approximate the functionality of

CrossOver. More specifically, by using VMFUNC, we can

implement three types of world-calls: UVM1→UVM2 (user to

user on different VMs) in one hop, KV M1→ KVM2 (kernel to

kernel on different VMs) in one hop, and UVM1 ←→ KVM2

(between user and kernel on different VMs) in two hops.

Table 3: World-calls Classification

Types
H/G

Swtch

Ring

Swtch

Space

Swtch

Hop

(HW.)

Hop

(SW.)

Hop

(VM-

FUNC)

Hop

(Cross-

Over)

UV M1 ←→ Khost

√ √ √
1 1

KVM1 ←→ Khost

√ √ √
1 1

UV M1 ←→ KVM1

√
1 1

Uhost ←→ Khost

√
1 1

UV M1 ←→Uhost

√ √ √
3 1

KVM1 ←→Uhost

√ √ √
2 1

Uhost ←→Uhost

√
2 1

KVM1 ←→ KVM2

√
2 1 1

UV M1 ←→UVM2

√
4 1 1

UV M1 ←→ KVM2

√ √
4 2 1

4.1. VMFUNC in Intel’s VT-x

VMFUNC is designed as a general interface to support

multiple functionalities specified by different indexes. Cur-

rent processors have only implemented one function (with in-

dex 0x0), which enables a guest VM to switch its extended

page table (EPT) without triggering any VMExit. With this

function, one intended use case is to isolate the running envi-

ronments of guest kernels from user applications to prevent

“return-to-user” attack [24], by switching to a new EPT with

the same mapping but different privileges when the kernel

starts to run. VMFUNC could be invoked in either kernel or

user mode in a guest VM.

The VMFUNC with index 0x0 is implemented as follows:

First of all, the hypervisor needs to set up an EPTP list for

the guest VM, which is pointed by a new MSR register. Each

item in the list points to a valid EPT that the guest VM can use.

A guest VM then invokes VMFUNC with function ID (0x0)

and an EPT index as parameters. The hardware then switches

to the new EPT by searching the EPTP list, and then resumes

execution. The hypervisor will not get involved during the

entire process after setup. VMFUNC instruction can be used

in either user mode or kernel mode.

4.2. Approximating CrossOver using VMFUNC

Other than its conventional use, we found that VMFUNC

could be crafted to implement parts of functionalities re-

quired by CrossOver. Specifically, for KVM1 → KVM2 and

UVM1→UVM2, both involve neither H/G mode switching nor

ring switching, but only address space switching. Hence, it is

possible to implement such switches using VMFUNC in one

hop. However, since UVM1 ←→ KVM2 needs to switch ring

levels, we need at least two hops: one for ring switching and

one for EPT switching. With the support of switching VMs

without hypervisor intervention, we can implement cross-VM

calls by VMFUNC to evaluate its effectiveness.

To approximate CrossOver as much as possible, we use

VMFUNC to simulate the following components. First, we

use the EPT list in VMFUNC to simulate the world-table in

CrossOver. We use one EPT for each simulated world. It is

required that the caller and callee must have the same value

in CR3 register, since switching EPT will not change CR3.

Using VMFUNC cannot switch the H/G mode, ring level or

page table root, so it can only implement UVM1→UVM2 and

KVM1 → KVM2. UVM1 → KVM2 is based on KVM1 → KVM2,

with an additional ring switch from UVM1 to KVM1.

Second, we construct a helper code snippet to implement

the process of world call and return. The code of helper is

mapped to the same virtual address region of the caller and

callee, so that after EPT switching, the PC will continue to

execute the next instruction smoothly. The function call and

return are both implemented by executing VMFUNC, with

different directions. Third, we create a shared memory region

in a commonly mapped virtual address range for parameter

passing. The caller will set up the region with the callee in

advance.

4.3. Case: Supporting Cross-VM System Call

Cross-VM system call mechanism provides an application

the ability to issue a system call service that is implemented in

another VM [38, 29, 18, 43]. Here we show how CrossOver

could improve performance by reducing world-calls.

The minimal cross-world path for cross-VM system call is:

UVM1→KVM2→UVM1. A direct world-call of UVM1→KVM2

requires switch ring levels, VM contexts and address spaces.

To this end, we need to modify the ring level, the EPT pointer

and the CR3 register correctly to those in another VM. A valid

CR3 value means there is a corresponding page table pointed

by the CR3 value in another VM, while a valid EPT value

means the corresponding entry indicated by an offset of the

VMFUNC instruction in EPTP-list address is an EPT pointer

of another VM, and changing the CR3 register and the EPTP

pointer must be done in order. However, since changing the

CR3 register could be done only in privileged level 0, we have

to do a ring-crossing to KVM1 first. The actual execution con-

text path is: UVM1→ KVM1→ KVM2. Since cross-VM system

call requires seamless code execution across different address

spaces, we map a non-writable code page to the same guest

physical address in kernel space of each process in a VM dur-

ing process creation time so that changing address space does

not require loading and storing all context information.

Figure 4 illustrates how the cross-VM system call executes.

To invoke a cross-VM system call, an application needs to

specify which VM it wants to call. To this end, after a VM

boots up, the hypervisor will assign a unique VM ID to each

VM and keep track of each VM’s EPT pointer by storing it in

the EPT-list address with an offset, which is the same as the

VM ID. We provide a hypercall for applications to query all

the existing VMs and their own VM ID. A cross-vm system

call will firstly be intercepted by a syscall dispatcher. The

syscall dispatcher will issue a special system call and jump to

the cross-world code page mapped earlier. The cross-world

code will first change the page table to that of a helper con-

text, which is created during VM boot and its page table entry

has the same guest physical address in all VMs so that after

changing the EPT pointer to another VM, this helper context

could still continue execution seamlessly.

This helper context is designed to do cross-world context

maintenance and execute the designated system call. When

its page table is loaded, the helper context saves current execu-

tion context and prepares the necessary calling information in

another inter-VM shared memory page located in user space.

After that, the helper context will invoke the VMFUNC in-

struction to switch to the paging-structure of the designated

VM. A syscall dispatcher in the designated VM will execute

the system call and put the necessary returned buffer to the

user space inter-VM shared memory page. The return path of

cross-VM system call is similar: restoring the current process

App

Hypervisor

VM-1

Kernel

Syscall

Dispatcher

Kernel

Syscall

Code

Shared

Memory

Page Table Page TableCR3 VM-2

①

②

⑥

③

⑤

④

⑦

⑧

CrossRing Code Page (RO)

Context Transition Step

(IN VM1 App) System call

(IN VM1 Kernel) Set CR3=CR

Disable INT

Set IDT=IDT2

Call VMFunc

(IN VM2 Kernel) Enable INT

Exec Syscall

Disable INT

Call VMFunc

(IN VM1 Kernel) Set IDT=IDT1

Enable INT

Set CR3=Px

(IN VM1 App) Return

Helper Helper

Figure 4: Cross-VM system call process.

EPTP

MSR1

EPTP

CR3

WT Cache

VMFUNC Logic
VMFUNC

H/G Ring

EPTP List World Table

MemoryMemory

CPUCPU

a) Origina l VMFUNC

of Inte l’s VT-x

b) Extending VMFUNC to

support world-cross calls

CR3

H/G Ring

IWT Cache

MSR1

EPTP List

P

WID

PTP

PC

EPTP

H/G

Ring

Entry Entry

World Table Structure

Figure 5: Extending VMFUNC to implement CrossOver. Added

elements are grey and extended elements are orange

context, switching back to the original VM helper context by

invoking VMFUNC.

5. Supporting CrossOver

Though a clever use of VMFUNC may support a part of

cross-world calls, it also has several limitations. First, as men-

tioned before, VMFUNC does not support changing of ring

level, H/G mode and page table root. Second, it does not has

the semantics of world call and return, thus requires both the

caller and the callee to be aware of the call address and return

address. One possible problem is that a malicious callee may

return to arbitrary address within the caller’s memory space,

thus we have to assume that both the caller and callee coop-

erate with each other. Third, it is not aware of world context,

thus the software needs to maintain such information.

This section first describes how to extend the processor sup-

port of VMFUNC to fully support cross-world call for x86,

and then describes a full-system implementation of the men-

tioned mechanisms in QEMU.

5.1. Extending VMFUNC to Support CrossOver

We propose a design by extending the current VMFUNC

mechanism, as shown in figure 5. There are two major com-

ponents: the data path for the world table, and the processing

logic for world call/return.

World table: The format of the world table is shown in

the right of figure 5, the semantics of each field is listed as

following:

• P is the present bit, which means whether the current entry

is active or not.

• WID is a world ID that is used to identify a specific world.

• H/G is a bit to show whether the world is in host mode or

guest mode.

• Ring is the ring level of the world.

• EPTP is a pointer to the world’s extended page table,

which is a host physical address.

• PTP is a pointer to the world’s page table, which is a guest

physical address.

• PC is the entry address of the world, which is a guest vir-

tual address. Each world has only one entry point.

During a world_call, the processor needs to look up thw

world table twice, one is to look up the world ID of the caller

based its context (H/G, Ring, EPTP and PTP), the other is

to look up the callee’s context using a world ID. To acceler-

ate such lookup operations, two caches for the world table,

WT Cache and IWT Cache (Inverted World Table Cache), are

added. WT Cache is keyed by WID and is mainly used for

finding callee context during a world_call, and IWT Cache

is used for finding the world ID of the caller, which is keyed

based on H/G, Ring, EPTP and PTP.

An alternative design that may further improve perfor-

mance is to add a hardware controlled register called Current

World ID that store the world ID of the current context that

is reloaded by the CPU automatically after context switches,

which is similar to hardware cache prefetch mechanism. As

this reloading process is not in the critical path during a world

call, the latency of a world call could be reduced. This design,

however, may be not feasible when only a few worlds create

their world entries. In that case, prefetching a non-existed

world at every context switch will cause cache miss and use-

less world table walk.

For caches and world table management, one possible de-

sign choice is to let the hardware manage cache consistency

and world table walk after a cache miss. However, this design

requires non-trivial hardware changes. In CrossOver, both the

WT-Cache and IWT-Cache are managed by software, simi-

lar as software-managed TLB. More specifically, a privileged

software (e.g., the hypervisor) is responsible for maintaining

the consistency of the two caches, including filling, eviction

and invalidation. When a cache miss occurs during a world

call, an exception will be raised and caught by the privileged

software, which will fill the cache entry by walking the world

table. Since most of world calls will not be intervened by the

privileged software and thus the design has little performance

impact. Further, the policies of cache filling and eviction are

more flexible, since they can be adjusted by the privileged

software according to the interaction patterns to achieve high

hit rate.

Support world_call: We implement world_call and man-

age_wtc as new functions to VMFUNC, with indexes as 0x1

and 0x2, respectively. For world_call, instead of only chang-

ing the EPT pointer, the processor will also change the ad-

dress space and processor mode to the target world, and jump

to the entry point indicated by the world table. Before that,

software needs to save the caller’s states to its world stack

maintained by itself. For manage_wtc, it contains two world

table cache operations, namely world table cache entry filling

and world table cache invalidation, according to the parame-

ter provided.

As shown in figure 5 (b), the per-core overhead of extend-

ing VMFUNC to support CrossOver is trivial: two small

world table caches (WT Cache and IWT Cache) and the in-

struction logics for two new instructions. Thus, this may be

added to existing processor with small changes and without

interacting with other core CPU logic like cache hierarchy

and coherency.

5.2. Full-system Emulation

To evaluate the functionality of CrossOver, we have im-

plemented the functionality of CrossOver based on QEMU

(version 2.2). Currently, QEMU simulates CPU virtualiza-

tion by modeling AMD’s SVM architecture. Since QEMU

does full-system simulation by translating the target platform

opcodes to host’s ones, instructions introduced by CrossOver

are implemented by extending new operands in INT instruc-

tion. QEMU will recognize such special instructions in the

translation phase and translate them into several target op-

codes, where we check and updat the world table cache as

well do world switches. Further, we also implemented a few

handlers to catch and handle world table related exceptions,

like looking up world table in memory and filling the world ta-

ble cache during a world table cache miss. In total, we added

around 500 LOCs in QEMU to support CrossOver.

5.3. Software Support for CrossOver

The design of CrossOver extends currently vertical calling

abstraction (i.e., syscall and vmcall) to both horizontal and

vertical directions. To support CrossOver, the system soft-

ware needs to have several changes. Most of the changes are

caused by the unawareness of underlying software on context

switch. Consider following scenario: process-a world_calls

process-b on the same VM. The CPU will change its PC and

page table register to process-b. However, after the call, the

OS still thinks that the current running process is process-a.

Thus, if there comes a timer interrupt that further triggers a

context switch, the OS will save process-b’s context to the

data structure of process-a. This will lead to an unrecover-

able state and may cause an unexpected condition. Similar

problems include I/O operations in virtualized environment.

For example, the hypervisor might load disk data to the mem-

ory of a wrong VM. Another issue is about lock and critical

section. The Linux kernel has some optimizations in single

core mode as a way of preventing unnecessary lock holdings.

However, after a world_call there might be more than one

CPU executing the same piece of code, which may cause in-

consistency or deadlock. Meanwhile, the software is respon-

sible for maintaining states of itself as a caller or states of all

the callers coming from other worlds (as a callee).

Specifically, in our current implementation on xv6 [14], we

make the OS scheduler aware of world_call by reloading the

process state before a context switch. We use a list of caller

and callee stacks to maintain the states of cross-world calls.

Currently, our software implementation does not support con-

current cross-world calls from one world. For Linux kernel,

the lock problem is bypassed by preventing more than one

vcpu with the same ID from executing the same piece of code.

6. Usage Scenarios

In this section, we describe four systems relying on world-

calls and how they are implemented with CrossOver using

VMFUNC. As we do not have the source code for these four

systems, we reimplemented the core functionalities of the

original systems both with and without the optimization en-

abled by CrossOver2. For cross-VM call, we create two VMs

which are exactly the same to support such calling. We also

discuss the world switch reduction of these systems in our

implementation.

Case Study 1: Proxos Proxos is implemented in Xen as a

libOS linked with each private application and there is a host

process in the untrusted OS. Each redirected system call will

first trap to the VMM using a hypercall and the hypervisor

injects the system call to guest VM host process with a vir-

tual interrupt. The redirected system call will be enqueued to

the host process descriptor and executed when the host pro-

cess is scheduled. After the system call execution, the VMM

will be notified only when the guest OS is running out of

runnable processes or preempted by VMM. Hence, the num-

ber of world-calls in Proxos during a system call redirection

is 6 (Figure 2(a)).

We implement the core functionalities of Proxos in KVM,

2The re-implemented version could be accessed through

http://ipads.se.sjtu.edu.cn/projects/crossover.html

Table 4: Microbenchmark Results of Cross-World Systems with/without Optimization

Benchmark

Guest Native
Linux
(µs)

Proxos HyperShell Tahoma ShadowContext

Original
(µs)

Optimized
(µs)

Latency
Reduced

Original
(µs)

Optimized
(µs)

Latency
Reduced

Original
(µs)

Optimized
(µs)

Latency
Reduced

Original
(µs)

Optimized
(µs)

Latency
Reduced

NULL system call 0.29 3.35 0.42 87.5% 2.60 0.72 72.3% 42.0 0.68 98.4% 3.40 0.71 79.1%

NULL I/0 0.34 2.44 0.50 85.5% 2.57 0.80 68.9% 42.6 0.72 98.3% 3.67 0.79 78.5%

open & close 1.38 8.18 1.91 76.7% 6.03 2.29 62.0% 89.1 2.21 97.5% 7.52 2.26 70.0%

stat 0.55 4.31 0.69 84.0% 2.87 0.98 65.9% 43.5 0.94 97.7% 3.69 0.99 73.2%

pipe 3.34 15.79 4.73 70.0% 13.1 4.99 61.9% 172.6 4.95 97.1% 17.10 5.02 70.6%

which follows the design of Proxos’ paper and requires six

world-calls. To redirect the system call, we write a kernel

module, which acts as a system call dispatcher, that intercepts

the necessary system call and redirects them to another VM.

Another optimized version using VMFUNC is implemented

without any ring-crossing. The internal implementation is

similar to cross-vm system call in section 4.3.

Case Study 2: HyperShell The redirected system call in

HyperShell will be handled by the host OS (or KVM) and

KVM will inject the system call to a helper process in the

designated guest VM when the helper process traps to KVM.

On finishing the system call execution, the helper process will

trap to KVM again and let KVM resume execution of the host

user-level shell. The helper process keeps executing INT3 in-

struction trapping to KVM so that the redirected system call

could be handled timely. We implemented the core function-

alities according to HyperShell’s paper.

We find that strictly following the original design using

VMFUNC could lead to a security hole: after switching a

host to a guest, CPU executes a guest VM with host privi-

lege. We remedy this problem by implementing HyperShell

in a guest VM instead of a host OS. This provides better se-

curity isolation for the HyperShell utilities. Note that, with

the full design of CrossOver, we can completely avoid this

problem. Now to execute a redirected system call, the origi-

nal HyperShell requires 8 world-calls and the optimized one

using VMFUNC only requires 4 world-calls.

Case Study 3: Tahoma Each web instance in Tahoma

runs in a VM, and a manager running in domain-0 controls

all instances by cross-VM RPC. The cross-VM RPC is imple-

mented as XML-formatted and carried over a TCP connection

using point-to-point virtual network link. Instead of imple-

menting a full prototype of Tahoma, we only implement the

communication between manager VM and browser instances

(called browser-calls) of Tahoma in KVM.

Case Study 4: ShadowContext The system calls from

a trusted VM are selectively redirected to an untrusted VM

to execute in ShadowContext. We implement a prototype of

ShadowContext according to the paper and another world-call

optimized version using VMFUNC. The original cross-world

path of ShadowContext is like this: a user space application

in a trusted VM issues a cross-vm system call, which will be

introspected by an introspection interface in kernel and this

introspection interface will raise a VMExit to trap to KVM.

KVM will create a dummy process and inject the redirected

system call to the dummy process with a software interrupt.

Another VMExit will be raised when the redirected system

call is done and the original guest introspection process will

be awakened and resumed. In the above steps, all the nec-

essary parameters and buffers are copied in and out across

VMs. In our implementation, we further apply an optimiza-

tion through avoiding copying all parameters and buffers by

using inter-VM shared memory.

An optimized version of ShadowContext is implemented

using VMFUNC, which directly reuses the design and imple-

mentation of the cross-VM system call: a redirected system

call issued by a user space application, will be intercepted by

the syscall dispatcher in kernel space. The syscall dispatcher

will switch to the untrusted VM directly using VMFUNC and

as a result, the execution context becomes the untrusted VM

kernel space. The redirected system is processed in place,

then another world switch will switch execution context back

to the trusted VM kernel space and return back to user space.

7. Evaluation

This section conducts performance evaluation of

CrossOver on a real hardware and QEMU. The platform is

an Intel Core i7-4770 Haswell machine with four cores. The

machine runs at 3.40 GHz with 32 GB memory. The host OS

is 64-bit Debian 7.0 with Linux kernel 3.16.0-rc4+ and the

guests run 64-bit Ubuntu 14.04 with Linux kernel 3.16.1. All

guest VMs are configured with one virtual CPU and 2GB

memory. The QEMU version is 2.2; the host and guest Linux

is 32-bit, the same version as the native evaluation. We also

implemented CrossOver in xv6 with minor modifications.

7.1. Evaluation on Real Hardware

We evaluate the efficiency of the VMFUNC mechanism in

overhead reduction for cross-world calls using the four sys-

tems we implemented in section 6.

7.1.1. Microbenchmarks Table 4 shows the latency of the

tested benchmark. The system call forwarding overhead of

Proxos ranges from 3.4X to 8.4X while the optimized ver-

sion using VMFUNC is 1.4X to 1.5X, which, as a result,

brings about 80% latency reduction. Note that the overhead

of Proxos in its paper evaluation could be up to 35X due to

the delay required to schedule the VM and the app to run. The

performance improvement in our prototype mainly comes

from hardware feature improvement and software optimiza-

tion enabled by CrossOver.

The overhead for Tahoma is much higher than the op-

timized one using CrossOver, since Tahoma uses point-to-

point virtual network link TCP connection based RPC as com-

munication channel. With the optimization, the overhead for

inter-VM communication is reduced by over 97%.

The original system call redirection overhead without

cross-world call optimization in ShadowContext ranges from

4X to 11X compared with the native Linux. The overhead

of system call redirection using VMFUNC, not surprisingly,

does not exceed 2X and the average system call redirection

latency reduction is about 73%. Similarly, the overhead of

HyperShell is reduced by around 75%.

Table 5: Evaluation Result of 6 Utility Tools

Utility
Guest Native
Linux (ms)

Cross-World w/o
CrossOver (ms)

Cross-World w/
CrossOver (ms)

Overhead
Reduction

pstree 6.00 26.32 8.40 68.1%

w 3.78 20.00 5.58 72.1%

grep 0.93 3.50 1.57 55.1%

users 1.00 3.67 1.63 55.6%

uptime 1.09 6.97 1.85 73.5%

ls 1.14 6.55 1.72 73.7%

Table 6: Evaluation Result of OpenSSH

File Size
(MB)

Guest Native
Linux
(MB/s)

Cross-World w/
CrossOver
(MB/s)

Cross-World w/o
CrossOver
(MB/s)

Throughout
Improvement

128 64 42.7 25.6 67%

256 64 42.7 23.3 83%

512 56.9 42.7 23.3 83%

1024 53.9 44.5 23.3 91%

7.1.2. Application Benchmarks Utility Software: One sce-

nario with cross-world call is to do VM introspection (e.g.,

ShadowContext) or VM management (e.g., HyperShell) us-

ing a shell. We show how CrossOver improves the overall

performance of such systems. Table 5 shows the results us-

ing 6 common utility tools that inspect states of another VM,

using hypervisor intervenes the system call redirection and

with CrossOver respectively. Specifically, we redirected all

the system calls of these utilities to another VM and executed

the utilities each with 10 times and computed the average time

of the execution.

As shown in the right column of Table 5, CrossOver leads

to an overhead reduction ranges from 55% to 73%. The reduc-

tion varies due to the proportion of time system calls spend in

each utility. Note that the synchronous nature of CrossOver

could lead to even larger overhead reduction when the target

VM has a higher load.

OpenSSH Server: Cross-world call is useful to achieve

security isolation while keeping a good performance. For ex-

ample, one can place security-critical operations in a secu-

rity VM, while leaving the common functionality in a private

VM. This has been studied extensively in the virtualization

and trusted computing community [19, 38].

To demonstrate the effectiveness of CrossOver in protect-

ing secrecy of sensitive data with low overhead, we parti-

tioned the OpenSSH server system calls into two parts accord-

ing to whether it will access the private key and those system

calls related to the private key and the user land code are ex-

ecuted in a private VM, while all other system calls such as

network operations are still in a public VM. This is done in a

manner similar to how Proxos separates the OpenSSH server.

We used CIL [32], a static analysis tool to find out func-

tions that will access the private key in the crypto library in

OpenSSL and manually instrumented all the system calls that

needed to be executed in the private VM in those functions.

To evaluate the average overhead, we ran an SSH client tool

called scp in the host to connect the the OpenSSH server and

copy security-sensive files ranging from 128MB to 1GB in

size from the server. The files locate in the private VM (al-

ready cached) and will be encrypted before sending to the

client through the public VM.

Table 6 shows the average througput of 10 runs. Since

scp is not a syscall-intensive application but involves a num-

ber of memory and network operations, the performance im-

provement is smaller than micro benchmark results. Still,

CrossOver enjoys more than 67% performance speedup com-

pared to the original ones. Note that, again, with the load of

the private VM increases, the performance of the hypervisor-

based cross-world call drops rapidly because of frequent con-

text switches, while the performance of CrossOver would be

largely not affected.

Table 7: Instruction Count in QEMU using LMbench3

Benchmark
Native
Linux

Cross-World w/
CrossOver

Cross-World w/o
CrossOver

getppid 1847 1880 2996

stat 1224 1257 2341

read 482 515 1593

write 439 472 1534

fstat 494 527 1704

open/close 1924 1957 3055

7.2. Evaluation on QEMU

As currently there is no cycle-accurate full-system simula-

tor with virtualization extension support, we use QEMU as a

full-system simulator to show the effectiveness of CrossOver

design by collecting the instruction counts for the LMbench3

benchmark suite [31] with and without CrossOver. The in-

struction count for system call redirection without CrossOver

varies greatly due to unpredictable scheduling latency, but we

try to make sure there are rare context switches during this

test. By default, we forward the tested system calls involved

in each application. As shown in Table 7, CrossOver only

incurs 33 additional instructions for each application (which

only has one system call redirected), including the world_call

instruction, several instructions to save and restore stack and

parameter passing. Note that, as the corresponding world has

already been loaded into the world table cache, there is no

world table cache miss during the process. Besides, stacks

are all pre-allocated in initialization phase and thus are not

counted here. Moreover, software didn’t authenticate the

caller during this evaluation.

8. Related Work

Cross-layer design: CrossOver continues the line of cross-

layer designs to provide performance and security [23, 8,

46, 37, 44]. Specifically, CrossOver advocates the need of

efficient cross-world calls in the form of crosscutting inter-

faces [12], with the proliferation of protection rings and do-

mains. We believe the design philosophy of CrossOver aligns

with the support for virtualization from hardware vendors,

which reduces the intervention from hypervisors. For exam-

ple, the evolution of Intel’s VT-x progressively relaxes more

conditions to be configurable to cause VMExit [22]. Further,

the design of single-root I/O virtualization (SR-IOV) also re-

duces hypervisor’s intervention by separating control from ex-

ecution, which notably reduces the number of VMExits [16].

One of the goals of the VMFUNC mechanism is providing

more flexible mechanism for a VM to control its execution.

CrossOver can be considered as a case of virtualizing inter-

VM communication, which can be implemented efficiently

by extending the existing VMFUNC mechanism.

Optimizing cross-layer calls: There have been several

efforts in optimizing communication in virtualized environ-

ments [25, 6, 34, 21, 30]. For example, XWAY optimizes

inter-VM socket performance through bypassing TCP/IP

stacks, avoiding page flipping, and providing a direct com-

munication path between VMs in the same machine [25].

Fido [6] further avoids the cost of parameter marshaling by

unifying the address space layout between two communicat-

ing VMs. Shuttle [34] instead weakens the isolation property

among VMs to optimize intra-VM communication for OS-

level virtualization systems. However, all these approaches

still require bouncing from the hypervisor, and thus incur ad-

ditional world switches. In contrast, CrossOver aims at pro-

viding direct switches between two communicating peers, yet

still preserves isolation by separating authentication from in-

vocation.

Capability-based systems: There have been various re-

searches on capability-based systems, either implemented in

either hardware [42, 2, 27, 7] or software [26, 35]. As men-

tioned before, these systems define and enforce various kinds

of capabilities in either software or hardware, which has to

make a tradeoff between flexibility and efficiency. CrossOver

tries to provide a hardware-software co-design solution. In

some sense, CrossOver can be viewed as a hardware exten-

sion providing a new capability of cross-world call which

supports up-level software to implement authorization and

provide various services across worlds without the interven-

tion of other privileged software to improve performance.

CODOMs [39] provides efficient protection among multiple

software components that share the same address space in a

capability manner, while CrossOver allows secure, efficient

and flexible cross-world calls across multiple layers not only

within the same address space, but also across multiple ad-

dress spaces.

9. Conclusion

This paper described CrossOver, a cross-world call mech-

anism that provides intervention-free cross-world calls. We

leverage a most-recent hardware feature, namely VMFUNC,

to implement parts of functionality needed for CrossOver.

Finally, we also show how existing VMFUNC mechanism

could be trivially enhanced to fully enable CrossOver. Case

studies using four recent systems show that CrossOver can

significantly improve their performance due to notably re-

duced world switches.

In our future work, we plan to extend a full-system cycle-

accurate simulator with the support of VT-x and CrossOver’s

design. By this mean, we plan to conduct a cycle-level eval-

uation of the performance of the full design of CrossOver.

Further, we plan to explore more usages scenarios where

CrossOver could be helpful, identify possible implication of

CrossOver on system design and propose a comprehentive

software design.

Acknowledgments

We thank the anonymous reviewers for their insightful

comments. This work is supported in part by the Program for

New Century Excellent Talents in University, Ministry of Ed-

ucation of China (No. ZXZY037003), the National Natural

Science Foundation of China (No. 61303011), a foundation

for the Author of National Excellent Doctoral Dissertation

of PR China (No. TS0220103006), the Shanghai Science

and Technology Development Fund for high-tech achieve-

ment translation (No. 14511100902), a research grant from

Intel and the Singapore NRF (CREATE E2S2). Prof. Haib-

ing Guan is the corresponding author.

References

[1] “Filesystem in userspace,” http://fuse.sourceforge.net/.
[2] “Introduction to inte memory protection extensions,”

http://software.intel.com/en-us/articles/introduction-to-intel-memory-
protection-extensions, 2013.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of virtu-
alization,” ACM SIGOPS Operating Systems Review, vol. 37, no. 5,
pp. 164–177, 2003.

[4] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor, N. Har’El,
A. Gordon, A. Liguori, O. Wasserman, and B.-A. Yassour, “The tur-
tles project: Design and implementation of nested virtualization,” in
Proc. OSDI, 2010.

[5] E. Buchanan, R. Roemer, H. Shacham, and S. Savage, “When good in-
structions go bad: generalizing return-oriented programming to risc,”
in Proceedings of the 15th ACM conference on Computer and commu-
nications security. ACM, 2008, pp. 27–38.

[6] A. Burtsev, K. Srinivasan, P. Radhakrishnan, K. Voruganti, and G. R.
Goodson, “Fido: Fast inter-virtual-machine communication for en-
terprise appliances.” in USENIX Annual technical conference. San
Diego, CA, 2009.

[7] N. P. Carter, S. W. Keckler, and W. J. Dally, “Hardware support for
fast capability-based addressing,” in ACM SIGPLAN Notices, vol. 29,
no. 11. ACM, 1994, pp. 319–327.

[8] D. Champagne and R. B. Lee, “Scalable architectural support for
trusted software,” in Proc. HPCA, 2010, pp. 1–12.

[9] H. Chen, J. Chen, W. Mao, and F. Yan, “Daonity-grid security from
two levels of virtualization,” Information Security Technical Report,
vol. 12, no. 3, pp. 123–138, 2007.

[10] H. Chen, F. Zhang, C. Chen, Z. Yang, R. Chen, B. Zang, P. Yew, and
W. Mao, “Tamper-resistant execution in an untrusted operating sys-
tem using a virtual machine monitor,” Parallel Processing Institute
Technical Report, Number: FDUPPITR-2007-0801, Fudan Univer-
sity, 2007.

[11] X. Chen, T. Garfinkel, E. Lewis, P. Subrahmanyam, C. Waldspurger,
D. Boneh, J. Dwoskin, and D. Ports, “Overshadow: a virtualization-
based approach to retrofitting protection in commodity operating sys-
tems,” in Proc. ASPLOS. ACM, 2008, pp. 2–13.

[12] T. C. C. Consortium, “21st century com-
puter architecture: A community white paper,”
http://www.cra.org/ccc/files/docs/init/21stcenturyarchitecturewhitepaper.pdf,
2012.

[13] R. S. Cox, J. G. Hansen, S. D. Gribble, and H. M. Levy, “A safety-
oriented platform for Web applications,” Security and Privacy, 2006
IEEE Symposium on, pp. 15–364, 2006.

[14] R. Cox, M. F. Kaashoek, and R. Morris, “Xv6, a simple unix-like
teaching operating system,” 2011.

[15] J. Devietti, C. Blundell, M. M. Martin, and S. Zdancewic, “Hard-
bound: architectural support for spatial safety of the c programming
language,” ACM SIGOPS Operating Systems Review, vol. 42, no. 2,
pp. 103–114, 2008.

[16] Y. Dong, X. Yang, X. Li, J. Li, K. Tian, and H. Guan, “High perfor-
mance network virtualization with sr-iov,” in High Performance Com-
puter Architecture (HPCA), 2010 IEEE 16th International Symposium
on. IEEE, 2010, pp. 1–10.

[17] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and
M. Williamson, “Safe hardware access with the xen virtual machine
monitor,” in 1st Workshop on Operating System and Architectural Sup-
port for the on demand IT InfraStructure (OASIS), 2004.

[18] Y. Fu, J. Zeng, and Z. Lin, “Hypershell: a practical hypervisor layer
guest os shell for automated in-vm management,” in Proceedings of
the 2014 USENIX conference on USENIX Annual Technical Confer-
ence. USENIX Association, 2014, pp. 85–96.

[19] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, “Terra:
A virtual machine-based platform for trusted computing,” in Proc.
SOSP. ACM, 2003, pp. 193–206.

[20] R. Goldberg, “Architecture of virtual machines,” in Proceedings of the
workshop on virtual computer systems, 1973, pp. 74–112.

[21] J. Hwang, K. Ramakrishnan, and T. Wood, “Netvm: high performance
and flexible networking using virtualization on commodity platforms,”
in 11th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 14). Seattle, WA: USENIX Association, 2014, pp.
445–458.

[22] I. Intel, “Intel-64 and ia-32 architectures software developer’s man-
ual,” Volume 3A: System Programming Guide, Part, vol. 1, 64.

[23] E. Keller, J. Szefer, J. Rexford, and R. B. Lee, “Nohype: virtualized
cloud infrastructure without the virtualization,” in ACM SIGARCH
Computer Architecture News, vol. 38, no. 3, 2010, pp. 350–361.

[24] V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis, “kguard:
Lightweight kernel protection against return-to-user attacks.” in
USENIX Security Symposium, 2012, pp. 459–474.

[25] K. Kim, C. Kim, S.-I. Jung, H.-S. Shin, and J.-S. Kim, “Inter-
domain socket communications supporting high performance and full
binary compatibility on xen,” in Proceedings of the fourth ACM SIG-
PLAN/SIGOPS international conference on Virtual execution environ-
ments. ACM, 2008, pp. 11–20.

[26] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Der-
rin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish et al.,
“sel4: Formal verification of an os kernel,” in Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles. ACM,
2009, pp. 207–220.

[27] A. Kwon, U. Dhawan, J. M. Smith, T. F. Knight Jr, and A. DeHon,
“Low-fat pointers: compact encoding and efficient gate-level imple-
mentation of fat pointers for spatial safety and capability-based secu-
rity,” in Proceedings of the 2013 ACM SIGSAC conference on Com-
puter & communications security. ACM, 2013, pp. 721–732.

[28] W. Li, M. Ma, J. Han, Y. Xia, B. Zang, C.-K. Chu, and T. Li, “Building
trusted path on untrusted device drivers for mobile devices,” in Proc.
APSys, 2014.

[29] Y. Li, J. McCune, J. Newsome, A. Perrig, B. Baker, and W. Drewry,
“Minibox: A two-way sandbox for x86 native code,” in 2014 USENIX
Annual Technical Conference (USENIX ATC 14). USENIX Associa-
tion, 2014.

[30] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “Clickos and the art of network function virtualization,”
in 11th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 14). Seattle, WA: USENIX Association, 2014, pp.
459–473.

[31] L. W. McVoy, C. Staelin et al., “lmbench: Portable tools for perfor-
mance analysis.” in USENIX annual technical conference. San Diego,
CA, USA, 1996, pp. 279–294.

[32] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer, “Cil: Intermedi-
ate language and tools for analysis and transformation of c programs,”
in Compiler Construction. Springer, 2002, pp. 213–228.

[33] H. Shacham, “The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86),” in Proceedings of the
14th ACM conference on Computer and communications security.
ACM, 2007, pp. 552–561.

[34] Z. Shan, X. Wang, T.-c. Chiueh, and X. Meng, “Facilitating inter-
application interactions for os-level virtualization,” in ACM SIGPLAN
Notices, vol. 47, no. 7. ACM, 2012, pp. 75–86.

[35] J. S. Shapiro, “Eros: A capability system,” Ph.D. dissertation, Univer-
sity of Pennsylvania, 1999.

[36] L. Soares and M. Stumm, “Flexsc: Flexible system call schedul-
ing with exception-less system calls,” in Proceedings of the 9th
USENIX conference on Operating systems design and implementation.
USENIX Association, 2010, pp. 1–8.

[37] J. Szefer and R. B. Lee, “Architectural support for hypervisor-secure
virtualization,” ACM SIGARCH Computer Architecture News, vol. 40,
no. 1, pp. 437–450, 2012.

[38] R. Ta-Min, L. Litty, and D. Lie, “Splitting interfaces: Making trust be-
tween applications and operating systems configurable,” in Proceed-
ings of the 7th symposium on Operating systems design and imple-
mentation. USENIX Association, 2006, pp. 279–292.

[39] L. Vilanova, M. Ben-Yehuda, N. Navarro, Y. Etsion, and M. Valero,
“Codoms: protecting software with code-centric memory domains,” in
Proceeding of the 41st annual international symposium on Computer
architecuture. IEEE Press, 2014, pp. 469–480.

[40] D. Wentzlaff, C. J. Jackson, P. Griffin, and A. Agarwal, “Configurable
fine-grain protection for multicore processor virtualization,” in Proc.
ISCA, 2012.

[41] D. Williams, H. Jamjoom, and H. Weatherspoon, “The xen-blanket:
virtualize once, run everywhere,” in Proceedings of the 7th ACM euro-
pean conference on Computer Systems. ACM, 2012, pp. 113–126.

[42] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe, “The
cheri capability model: Revisiting risc in an age of risk,” 2014.

[43] R. Wu, P. Chen, P. Liu, and B. Mao, “System Call Redirection: A Prac-
tical Approach to Meeting Real-world Virtual Machine Introspection
Needs,” in DSN, Jun. 2014, pp. 1–12.

[44] Y. Xia, Y. Liu, and H. Chen, “Architecture support for guest-
transparent vm protection from untrusted hypervisor and physical at-
tacks.” in Proc. HPCA, 2013, pp. 246–257.

[45] J. Yang and K. G. Shin, “Using hypervisor to provide data secrecy for
user applications on a per-page basis,” in Proc. VEE, 2008, pp. 71–80.

[46] F. Zhang, J. Chen, H. Chen, and B. Zang, “Cloudvisor: retrofitting
protection of virtual machines in multi-tenant cloud with nested virtu-
alization,” in Proc. SOSP, 2011, pp. 203–216.

